首页> 外文期刊>Mechanical systems and signal processing >Non-invasive damage detection in beams using marker extraction and wavelets
【24h】

Non-invasive damage detection in beams using marker extraction and wavelets

机译:使用标记提取和小波的光束非侵入式损伤检测

获取原文
获取原文并翻译 | 示例

摘要

For structural health monitoring applications there is a need for simple and contact-less methods of Non-Destructive Evaluation (NDE). A number of damage detection techniques have been developed, such as frequency shift, generalised fractal dimension and wavelet transforms with the aim to identify, locate and determine the severity of damage in a material or structure. These techniques are often tailored for factors such as (ⅰ) type of material, (ⅱ) damage pattern (crack, delamination), and (ⅲ) the nature of any input signals (space and time). This paper describes and evaluates a wavelet-based damage detection framework that locates damage on cantilevered beams via NDE using computer vision technologies. The novelty of the approach is the use of computer vision algorithms for the contact-less acquisition of modal shapes. Using the proposed method, the modal shapes of cantilever beams are reconstructed by extracting markers using sub-pixel Hough Transforms from images captured using conventional slow motion cameras. The extracted modal shapes are then used as an input for wavelet transform damage detection, exploiting both discrete and continuous variants. The experimental results are verified and compared against finite element analysis. The methodology enables a non-invasive damage detection system that avoids the need for expensive equipment or the attachment of sensors to the structure. Two types of damage are investigated in our experiments: (ⅰi) defects induced by removing material to reduce the stiffness of a steel beam and (ⅱ) delaminations in a (0/90/0/90/0)_s composite laminate. Results show successful detection of notch depths of 5%, 28% and 50% for the steel beam and of 30 mm delaminations in central and outer layers for the composite laminate.
机译:对于结构健康监测应用,需要一种简单且无接触的无损评估(NDE)方法。已经开发了许多损伤检测技术,例如频移,广义分形维数和小波变换,目的是识别,定位和确定材料或结构中损伤的严重性。这些技术通常是针对以下因素量身定制的:(factors)材料类型,(ⅱ)损坏模式(裂纹,分层)和(ⅲ)任何输入信号的性质(空间和时间)。本文描述并评估了一种基于小波的损伤检测框架,该框架使用计算机视觉技术通过NDE定位悬臂梁上的损伤。该方法的新颖之处在于使用计算机视觉算法进行模态形状的非接触式采集。使用所提出的方法,通过使用子像素霍夫变换从使用常规慢动作摄像机拍摄的图像中提取标记来重建悬臂梁的模态形状。然后,利用离散和连续变体,将提取的模态形状用作小波变换损伤检测的输入。实验结果得到了验证,并与有限元分析进行了比较。该方法实现了一种非侵入式损伤检测系统,从而避免了对昂贵设备的需求或传感器与结构的连接。在我们的实验中研究了两种类型的损坏:(ⅰ)去除材料以降低钢梁刚度引起的缺陷和(ⅱ)(0/90/0/90/0)s复合层压板的分层。结果表明,对于钢梁成功地检测到了5%,28%和50%的切口深度,对于复合材料层压板,在中层和外层中成功地检测到30毫米的分层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号