首页> 外文期刊>Mechanical systems and signal processing >Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and Artificial Neural Networks
【24h】

Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and Artificial Neural Networks

机译:应用导波测量和人工神经网络识别弹性各向同性薄板参数

获取原文
获取原文并翻译 | 示例

摘要

A new hybrid computational system for material identification (HCSMI) is presented, developed for the identification of homogeneous, elastic, isotropic plate parameters. Attention is focused on the construction of dispersion curves, related to Lamb waves. The main idea of the system HCSMI lies in separation of two essential basic computational stages, corresponding to direct or inverse analyses. In the frame of the first stage an experimental dispersion curve DC_(exp) is constructed, applying Guided Wave Measurement (GWM) technique. Then, in the other stage, corresponding to the inverse analysis, an Artificial Neural Network (ANN) is trained 'off line'. The substitution of results of the first stage, treated as inputs of the ANN, gives the values of identified plate parameters. In such a way no iteration is needed, unlike to the classical approach. In such an approach, the "distance" between the approximate experimental curves DC_(exp) and dispersion curves DC_(num) obtained in the direct analysis, is iteratively minimized. Two case studies are presented, corresponding either to measurements in laboratory tests or those related to pseudo-experimental noisy data of computer simulations. The obtained results prove high numerical efficiency of HCSMI, applied to the identification of aluminum plate parameters.
机译:提出了一种新的材料识别混合计算系统(HCSMI),用于识别均质,弹性,各向同性的板参数。注意集中在与兰姆波有关的色散曲线的构造上。系统HCSMI的主要思想在于分离两个基本的基本计算阶段,分别对应于直接或逆向分析。在第一阶段的框架中,使用导波测量(GWM)技术构建了实验色散曲线DC_(exp)。然后,在另一阶段,对应于逆分析,“离线”训练了人工神经网络(ANN)。将第一阶段的结果替换为ANN的输入,即可得出已识别板参数的值。以这种方式,不需要迭代,这不同于经典方法。在这种方法中,将直接分析中获得的近似实验曲线DC_(exp)和离散曲线DC_(num)之间的“距离”迭代最小化。提出了两个案例研究,分别对应于实验室测试中的测量或与计算机模拟的伪实验噪声数据有关的测量。所得结果证明了HCSMI具有很高的数值效率,可用于铝板参数的识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号