首页> 外文期刊>Mechanical systems and signal processing >Feature extraction method of bearing AE signal based on improved FAST-ICA and wavelet packet energy
【24h】

Feature extraction method of bearing AE signal based on improved FAST-ICA and wavelet packet energy

机译:基于改进的FAST-ICA和小波包能量的方位AE信号特征提取方法

获取原文
获取原文并翻译 | 示例

摘要

In order to accomplish the feature extraction from a mixed fault signal of bearings, this paper proposes a feature extraction method based on the improved Fast-ICA algorithm and the wavelet packet energy spectrum. The conventional fast-ICA algorithm can only separate the mixed signals, while the convergence speed is relatively slow and the convergence effect is not sufficient. The method of the third-order Newton iteration is adopted in this paper to improve the Fast-ICA algorithm. Moreover, the improved Fast-ICA algorithm is confirmed to have a faster convergence speed and higher precision than the conventional Fast-ICA algorithm. The improved Fast-ICA algorithm is applied to separate the acoustic emission signal in which two kinds of fault components are comprised. The wavelet packet energy spectrum is used to extract the feature information in the separated samples. In addition, the fault diagnosis is performed based on the SVM algorithm. It is confirmed that the slight damage and fracture of a bearing can accurately be recognized. The results show that the improved FAST-ICA and wavelet packet energy method in feature extraction is sufficiently effective.
机译:为了完成轴承混合故障信号的特征提取,提出了一种基于改进的Fast-ICA算法和小波包能谱的特征提取方法。传统的快速ICA算法只能分离混合信号,而收敛速度相对较慢,收敛效果不充分。本文采用三阶牛顿迭代法对Fast-ICA算法进行了改进。此外,与传统的Fast-ICA算法相比,改进的Fast-ICA算法具有更快的收敛速度和更高的精度。改进的Fast-ICA算法用于分离包含两种故障分量的声发射信号。小波包能量谱用于提取分离样本中的特征信息。另外,基于SVM算法执行故障诊断。可以确认的是,可以准确地识别出轴承的轻微损坏和断裂。结果表明,改进的FAST-ICA和小波包能量方法在特征提取中是足够有效的。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2015年第10期|91-99|共9页
  • 作者单位

    School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, PR China;

    School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, PR China;

    School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, PR China;

    School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bearing; AE signal; Improved Fast-ICA;

    机译:轴承;AE信号;改进的Fast-ICA;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号