首页> 外文期刊>Mechanical systems and signal processing >A hybrid fault diagnosis method using morphological filter-translation invariant wavelet and improved ensemble empirical mode decomposition
【24h】

A hybrid fault diagnosis method using morphological filter-translation invariant wavelet and improved ensemble empirical mode decomposition

机译:形态滤波平移不变小波与改进的集成经验模态分解的混合故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

Defective rolling bearing response is often characterized by the presence of periodic impulses, which are usually immersed in heavy noise. Therefore, a hybrid fault diagnosis approach is proposed. The morphological filter combining with translation invariant wavelet is taken as the pre-filter process unit to reduce the narrowband impulses and random noises in the original signal, then the purified signal will be decomposed by improved ensemble empirical mode decomposition (EEMD), in which a new selection method integrating autocorrelation analysis with the first two intrinsic mode functions (IMFs) having the maximum energies is put forward to eliminate the pseudo low-frequency components of IMFs. Applying the envelope analysis on those selected IMFs, the defect information is easily extracted. The proposed hybrid approach is evaluated by simulations and vibration signals of defective bearings with outer race fault, inner race fault, rolling element fault. Results show that the approach is feasible and effective for the fault detection of rolling bearing.
机译:滚动轴承响应不良通常特征在于存在周期性的脉冲,这些脉冲通常沉浸在高噪声中。因此,提出了一种混合故障诊断方法。将形态学滤波器与平移不变小波相结合作为前置滤波器处理单元,以减少原始信号中的窄带脉冲和随机噪声,然后通过改进的集成经验模态分解(EEMD)分解纯信号。提出了一种将自相关分析与具有最大能量的前两个固有模式函数(IMF)相集成的新选择方法,以消除IMF的伪低频分量。对那些选定的IMF应用包络分析,可以轻松提取缺陷信息。通过模拟和带有外圈故障,内圈故障,滚动元件故障的有缺陷轴承的振动信号,对提出的混合方法进行了评估。结果表明,该方法对滚动轴承的故障检测是可行,有效的。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2015年第1期|101-115|共15页
  • 作者单位

    College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, PR China,School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, PR China;

    College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, PR China;

    School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, PR China;

    College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, PR China;

    College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Morphological filter; Translation invariant wavelet; Improved EEMD; Rolling bearing; Denoising; Fault diagnosis;

    机译:形态过滤器平移不变小波;改进的EEMD;滚动轴承;去噪;故障诊断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号