首页> 外文期刊>Mechanical systems and signal processing >Ascertainment-adjusted parameter estimation approach to improve robustness against misspecification of health monitoring methods
【24h】

Ascertainment-adjusted parameter estimation approach to improve robustness against misspecification of health monitoring methods

机译:确定性调整参数估计方法可提高针对健康监测方法错误指定的鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

Condition monitoring aims at ensuring system safety which is a fundamental requirement for industrial applications and that has become an inescapable social demand. This objective is attained by instrumenting the system and developing data analytics methods such as statistical models able to turn data into relevant knowledge. One difficulty is to be able to correctly estimate the parameters of those methods based on time-series data. This paper suggests the use of the Weighted Distribution Theory together with the Expectation-Maximization algorithm to improve parameter estimation in statistical models with latent variables with an application to health monotonic under uncertainty. The improvement of estimates is made possible by incorporating uncertain and possibly noisy prior knowledge on latent variables in a sound manner. The latent variables are exploited to build a degradation model of dynamical system represented as a sequence of discrete states. Examples on Gaussian Mixture Models, Hidden Markov Models (HMM) with discrete and continuous outputs are presented on both simulated data and benchmarks using the turbofan engine datasets. A focus on the application of a discrete HMM to health monitoring under uncertainty allows to emphasize the interest of the proposed approach in presence of different operating conditions and fault modes. It is shown that the proposed model depicts high robustness in presence of noisy and uncertain prior.
机译:状态监视旨在确保系统安全,这是工业应用的基本要求,并且已经成为不可避免的社会需求。通过对系统进行检测并开发数据分析方法(例如能够将数据转化为相关知识的统计模型)来实现此目标。一个困难是能够基于时序数据正确估计那些方法的参数。本文建议使用加权分布理论和Expectation-Maximization算法来改进具有潜在变量的统计模型中的参数估计,并将其应用于不确定性下的健康单调。通过以合理的方式结合潜在变量的不确定和可能有噪声的先验知识,可以改进估计值。利用潜在变量来构建表示为离散状态序列的动力学系统的退化模型。使用涡轮风扇发动机数据集,在模拟数据和基准测试中均提供了具有离散和连续输出的高斯混合模型,隐马尔可夫模型(HMM)的示例。在不确定性下将离散HMM应用于健康状况监控的重点在于,可以在存在不同的工作条件和故障模式的情况下强调所提出方法的兴趣。结果表明,所提出的模型在存在噪声和不确定先验的情况下具有很高的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号