首页> 外文期刊>Mechanical systems and signal processing >Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an Unscented Kalman Filter algorithm
【24h】

Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an Unscented Kalman Filter algorithm

机译:基于传感器数据融合的车辆侧滑角测量,使用集成的ANFIS和无味卡尔曼滤波算法

获取原文
获取原文并翻译 | 示例

摘要

Most existing ESC (Electronic Stability Control) systems rely on the measurement of both yaw rate and sideslip angle. However, one of the main issues is that the sideslip angle cannot be measured directly because the sensors are too expensive. For this reason, sideslip angle estimation has been widely discussed in the relevant literature. The modeling of sideslip angle is complex due to the non-linear dynamics of the vehicle. In this paper, we propose a novel observer based on ANFIS, combined with Kalman Filters in order to estimate the sideslip angle, which in turn is used to control the vehicle dynamics and improve its behavior. For this reason, low-cost sensor measurements which are integrated into the actual vehicle and executed in real time have to be used. The ANFIS system estimates a "pseudo-sideslip angle" through parameters which are easily measured, using sensors equipped in actual vehicles (inertial sensors and steering wheel sensors); this value is introduced in UKF in order to filter noise and to minimize the variance of the estimation mean square error. The estimator has been validated by comparing the observed proposal with the values provided by the CARSIM model, which is a piece of experimentally validated software. The advantage of this estimation is the modeling of the non-linear dynamics of the vehicle, by means of signals which are directly measured from vehicle sensors. The results show the effectiveness of the proposed ANFIS+UKF-based sideslip angle estimator.
机译:现有的大多数ESC(电子稳定性控制)系统都依赖于横摆率和侧滑角的测量。然而,主要问题之一是由于传感器太昂贵而不能直接测量侧滑角。因此,在相关文献中已经广泛讨论了侧滑角估计。由于车辆的非线性动力学,侧滑角的建模很复杂。在本文中,我们提出了一种基于ANFIS并结合Kalman滤波器的新型观察器,以估计侧滑角,从而将其用于控制​​车辆动力学并改善其行为。因此,必须使用集成到实际车辆中并实时执行的低成本传感器测量。 ANFIS系统通过使用实际车辆中配备的传感器(惯性传感器和方向盘传感器)易于测量的参数来估算“伪侧滑角”;在UKF中引入此值是为了过滤噪声并最小化估计均方误差的方差。通过将观察到的提案与CARSIM模型提供的值进行比较,对估算器进行了验证,CARSIM模型是一款经过实验验证的软件。该估计的优点是借助于直接从车辆传感器测量的信号对车辆的非线性动力学建模。结果表明了所提出的基于ANFIS + UKF的侧滑角估计器的有效性。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2016年第5期|832-845|共14页
  • 作者单位

    Mechanical Engineering Department, Research Institute of Vehicle Safety (ISVA), Universidad Carlos Ⅲ de Madrid, Avenida de la Universidad, 30 Leganes, Madrid, Spain;

    Mechanical Engineering Department, Research Institute of Vehicle Safety (ISVA), Universidad Carlos Ⅲ de Madrid, Avenida de la Universidad, 30 Leganes, Madrid, Spain;

    Mechanical Engineering Department, Research Institute of Vehicle Safety (ISVA), Universidad Carlos Ⅲ de Madrid, Avenida de la Universidad, 30 Leganes, Madrid, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Vehicle dynamics; Sideslip angle; Estimation; Unscented Kalman Filter; Adaptive Neuro-Fuzzy Inference System;

    机译:车辆动力学;侧滑角估计;无味卡尔曼滤波器自适应神经模糊推理系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号