首页> 外文期刊>Mechanical systems and signal processing >Empirical and fully Bayesian approaches for the identification of vibration sources from transverse displacement measurements
【24h】

Empirical and fully Bayesian approaches for the identification of vibration sources from transverse displacement measurements

机译:从横向位移测量中识别振动源的经验和完全贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces the Bayesian regularization applied to the Force Analysis Technique (FAT), a method for identifying vibration sources from displacement measurements. The FAT is based on the equation of motion of a structure instead of a transfer matrix as it is the case for most of inverse problems. This particularity allows the estimation of vibration sources without the need of boundary conditions. Nevertheless, this method is highly sensitive to noise perturbations and needs a careful regularization. Two Bayesian approaches are thus presented. Firstly, the empirical Bayesian regularization which shows better robustness than L-curve and GCV regularizations while keeping a low numerical cost. Secondly, a fully Bayesian procedure using a Markov Chain Monte Carlo (MCMC) algorithm which provides credible intervals on variables of interest besides the automatically regularized vibration source field. In particular, measurement quality can be evaluated by the noise variance estimation and the uncertainties over the source level are quantified for a wide frequency range, with only a unique measurement scan.
机译:本文介绍了应用于力分析技术(FAT)的贝叶斯正则化,这是一种从位移测量中识别振动源的方法。 FAT是基于结构的运动方程而不是传递矩阵,因为大多数逆问题都是这种情况。这种特殊性使得无需边界条件即可估计振动源。但是,该方法对噪声扰动高度敏感,需要进行仔细的正则化。因此提出了两种贝叶斯方法。首先,经验贝叶斯正则化具有比L曲线和GCV正则化更好的鲁棒性,同时保持了较低的数值成本。其次,使用马尔可夫链蒙特卡洛(MCMC)算法的完全贝叶斯程序,除了自动调整的振动源场外,它还可以对感兴趣的变量提供可靠的区间。特别是,可以通过噪声方差估计来评估测量质量,并且仅使用唯一的测量扫描就可以在很宽的频率范围内量化源电平上的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号