首页> 外文期刊>Mechanical systems and signal processing >An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission
【24h】

An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission

机译:基于声发射的集成高斯过程回归,用于预测低速轴承的剩余使用寿命

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an optimal Gaussian process regression (GPR) for the prediction of remaining useful life (RUL) of slow speed bearings based on a novel degradation assessment index obtained from acoustic emission signal. The optimal GPR is obtained from an integration or combination of existing simple mean and covariance functions in order to capture the observed trend of the bearing degradation as well the irregularities in the data. The resulting integrated GPR model provides an excellent fit to the data and improves over the simple GPR models that are based on simple mean and covariance functions. In addition, it achieves a low percentage error prediction of the remaining useful life of slow speed bearings. These findings are robust under varying operating conditions such as loading and speed and can be applied to nonlinear and nonstationary machine response signals useful for effective preventive machine maintenance purposes.
机译:本文基于从声发射信号获得的新的退化评估指标,提出了一种最优的高斯过程回归(GPR)来预测慢速轴承的剩余使用寿命(RUL)。最佳GPR从现有的简单均值和协方差函数的积分或组合中获得,以便捕获观察到的轴承退化趋势以及数据中的不规则性。生成的集成GPR模型非常适合数据,并改进了基于简单均值和协方差函数的简单GPR模型。此外,它可以实现低速轴承剩余使用寿命的低百分比误差预测。这些发现在变化的工作条件(例如负载和速度)下具有很强的鲁棒性,并且可以应用于对有效预防性机器维护有用的非线性和非平稳机器响应信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号