首页> 外文期刊>Mechanical systems and signal processing >Vibration-based damage detection for a population of nominally identical structures: Unsupervised Multiple Model (MM) statistical time series type methods
【24h】

Vibration-based damage detection for a population of nominally identical structures: Unsupervised Multiple Model (MM) statistical time series type methods

机译:名义上相同结构的群体基于振动的损伤检测:无监督多模型(MM)统计时间序列类型方法

获取原文
获取原文并翻译 | 示例

摘要

The problem of vibration-based damage detection for a population of nominally identical structures is considered via unsupervised statistical time series type methods. For this purpose a population sample comprising 31 nominally identical composite beams with significant beam-to-beam variability in the dynamics is employed, with impact-induced damage at various positions and two distinct energy levels. Two Multiple Model, MM, based statistical time series type methods are postulated, assessed, and compared with two ‘conventional’ methods. The assessment is based on a comprehensive and systematic procedure, making use of thousands of test cases via a ‘rotation’ procedure, with the results presented in the form of Receiver Operating Characteristic, ROC, curves. These indicate that ‘conventional’ methods are mostly ineffective, especially with low impact energy damages. On the other hand, the postulated Multiple Model parameter based methods achieve significantly improved performance, characterized as very good and providing overall correct damage detection rates approaching 100%for false alarm rates at or above 5%.
机译:通过无监督统计时间序列类型方法考虑了名义上相同结构的总体基于振动的损坏检测问题。为此,采用了人口样本,该样本包含31个名义上相同的复合梁,在动力学方面具有显着的梁到梁可变性,并且在不同位置和两个不同的能级具有冲击诱发的损伤。假定,评估和评估了两种基于MM的多重模型统计时间序列类型的方法,并与两种“常规”方法进行了比较。评估基于一个全面而系统的程序,通过“轮换”程序利用了成千上万的测试用例,结果以接收器工作特性曲线(ROC)曲线的形式呈现。这些表明“常规”方法大多无效,尤其是在冲击能量损失较低的情况下。另一方面,假定的基于多个模型参数的方法可显着提高性能,具有非常好的特征,并且对于5%或更高的误报率,可提供接近100%的总体正确损坏检测率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号