首页> 外文期刊>Mechanical systems and signal processing >A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings
【24h】

A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings

机译:机车轴承智能故障诊断的一种新的跟踪深小波自动编码器方法

获取原文
获取原文并翻译 | 示例

摘要

The condition monitoring of electric locomotive has attracted more and more attention due to its significance for improving the security, reliability and automation level. In this paper, a novel tracking deep wavelet auto-encoder (TDWAE) method is proposed for the intelligent fault diagnosis of electric locomotive bearings. Firstly, Gaussian wavelet function is adopted as the activation function to design wavelet auto-encoder (WAE), which can greatly enhance the quality of the features learned from the raw vibration signals of bearings. Secondly, a deep wavelet auto-encoder (DWAE) is constructed with several WAEs for higher-level feature learning and automatic fault diagnosis. Finally, an adaptive tracking learning algorithm is developed for flexibly determining the learning rate to further improve the diagnosis performance. The proposed method is applied to analyze the experimental vibration signals collected from electric locomotive bearings, and the results demonstrate that the proposed method is more effective than the traditional methods and standard deep auto-encoder.
机译:电力机车状态监测对提高安全性,可靠性和自动化水平具有重要意义,因此受到越来越多的关注。提出了一种新颖的跟踪深小波自动编码器(TDWAE)方法,用于电力机车轴承的智能故障诊断。首先,采用高斯小波函数作为激活函数来设计小波自动编码器(WAE),可以大大提高从轴承原始振动信号中学到的特征的质量。其次,构造了具有多个WAE的深度小波自动编码器(DWAE),用于高级特征学习和自动故障诊断。最后,开发了一种自适应跟踪学习算法,可以灵活地确定学习率,从而进一步提高诊断性能。将该方法应用于从机车轴承中采集到的实验振动信号进行分析,结果表明,该方法比传统方法和标准的深度自动编码器更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号