首页> 外文期刊>Mechanical systems and signal processing >Differential evolution-based multi-objective optimization for the definition of a health indicator for fault diagnostics and prognostics
【24h】

Differential evolution-based multi-objective optimization for the definition of a health indicator for fault diagnostics and prognostics

机译:基于差异演化的多目标优化,用于故障诊断和预测的健康指标定义

获取原文
获取原文并翻译 | 示例

摘要

The identification of the current degradation state of an industrial component and the prediction of its future evolution is a fundamental step for the development of condition-based and predictive maintenance approaches. The objective of the present work is to propose a general method for extracting a health indicator to measure the amount of component degradation from a set of signals measured during operation. The proposed method is based on the combined use of feature extraction techniques, such as Empirical Mode Decomposition and Auto-Associative Kernel Regression, and a multi-objective Binary Differential Evolution (BDE) algorithm for selecting the subset of features optimal for the definition of the health indicator. The objectives of the optimization are desired characteristics of the health indicator, such as monotonicity, trendability and prognosabil-ity. A case study is considered, concerning the prediction of the remaining useful life of tur-bofan engines. The obtained results confirm that the method is capable of extracting health indicators suitable for accurate prognostics.
机译:识别工业组件的当前退化状态并预测其未来发展是开发基于状态和预测性维护方法的基本步骤。本工作的目的是提出一种用于从运行期间测量的一组信号中提取健康指标以测量组件退化量的通用方法。所提出的方法是基于特征提取技术(如经验模式分解和自相关核回归)的结合使用,以及一种多目标二进制差分演化(BDE)算法,用于选择最适合定义特征的特征子集。健康指标。优化的目标是健康指标的期望特性,例如单调性,趋势性和可预见性。考虑了一个案例研究,涉及对涡轮增压发动机剩余使用寿命的预测。获得的结果证实该方法能够提取适合于准确预测的健康指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号