首页> 外文期刊>Mechanical systems and signal processing >Neural network prediction of sound quality via domain Knowledge-Based data augmentation and Bayesian approach with small data sets
【24h】

Neural network prediction of sound quality via domain Knowledge-Based data augmentation and Bayesian approach with small data sets

机译:基于域知识的数据增强和小数据集的贝叶斯方法的音质神经网络预测

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a novel deep learning methodology to evaluate the interior noise in vehicles on mechanical and affective levels by employing small data sets. A convolutional neural network (CNN) model is constructed from the frequency-rpm spectrograms of vehicle noises to predict the mechanical attributes of the noise. The noises are classified based on the number of engine cylinders (3, 4, 6, and 8). Owing to the high variability in spectrograms, mathematical expressions for the engine order lines are derived to augment the training data. With respect to the affective attributes, three classes (i.e., 'sporty,' 'powerful,' and 'luxurious') are selected for noise characterization. The spectrograms are used to design another CNN-based classification model that predicts the affective attributes from the perspective of experts. Although expert knowledge is employed for data labeling, a quarter of the data remains unlabeled, owing to inherent subjectivity. The model is trained on the labeled data and is validated by comparing the predicted class probabilities for the unlabeled data and their distribution in the RGB color space. K-fold cross-validation is used to evaluate the reliability of the model. A regression model is built based on Bayesian inference to evaluate the affective attributes of the noise from the perspective of end users. Given four singular values from the matrix of sound quality metrics, the model predicts the mean jury ratings for noise. The classification models exhibit generalization performances of 98.2% and 91.6%, respectively, and the regression model exhibits a mean squared error of 2.57 × 10~(-3), thereby demonstrating the applicability of the proposed approach to vehicle noise analysis.
机译:这项研究提出了一种新的深度学习方法,通过使用小数据集,以评估对机械和情感层面的车辆车内噪音。卷积神经网络(CNN)模型是从车辆噪声的频率-RPM谱图构造为预测噪声的机械属性。噪声是基于发动机气缸(3,4,6和8)的数目进行分类。由于在频谱的高可变性,发动机订单行数学表达式得出,以增加训练数据。相对于情感属性,三类(即,“运动感”,“强大”和“豪华”)被选择为噪声表征。该频谱用于设计,预测从专家的角度看情感属性另一个基于CNN-分类模型。虽然采用数据标注的专业知识,该数据一季度仍然未标记的,由于固有的主观性。该模型被训练上标记的数据,并通过比较预测类的概率为未标记的数据和他们在RGB色彩空间分布验证。 K-折交叉验证来评估模型的可靠性。回归模型是基于贝叶斯推理,从最终用户的角度评估噪声的情感属性建。鉴于从声音质量度量矩阵4个奇异值,模型预测噪声平均值陪审团评级。所述分类模型表现出分别为98.2%和91.6%,泛化表演,并且回归模型表现出2.57×10〜(-3)的平均平方误差,从而表明所提出的方法,以车辆噪声分析的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号