首页> 外文期刊>Mechanical systems and signal processing >Surrogate modeling immersed probability density evolution method for structural reliability analysis in high dimensions
【24h】

Surrogate modeling immersed probability density evolution method for structural reliability analysis in high dimensions

机译:高尺寸结构可靠性分析的替代模型浸入概率密度进化方法

获取原文
获取原文并翻译 | 示例

摘要

In conjunction with advanced surrogate modeling methods, an improved scheme of probability density evolution method (PDEM) is presented to tackle with the challenge inherent in high-dimensional structural reliability analysis. In this method, the KPCA-GPR model is developed, where the kernel principal component analysis (KPCA)-based nonlinear dimension reduction and the Gaussian process regression (GPR) surrogate model are combined via a joint-training scheme. In this regard, the identified KPCA-based subspace is optimal to the approximation accuracy of the resultant GPR model. Then, the KPCA-GPR model is constructed using the active learning (AL)-based sampling strategy, so as to accurately approximate the equivalent extreme-value (EEV) of structural responses at the whole representative point set involved in the PDEM with as fewer samples as possible. Finally, the reliability is readily evaluated by the one-dimensional integral of the EEVs' probability density function derived from the PDEM. To illustrate the effectiveness of the proposed AL-KPCA-GPR-PDEM, two numerical examples are studied, involving the reliability analysis of both nonlinear analytical functions with different dimensions and shear-frame structures under earthquake ground motions. Numerical results indicate that massive computational cost savings and desirable accuracy enhancement are achieved by the AL-KPCA-GPR-PDEM when dealing with the reliability problems in high dimensions.
机译:结合高级替代建模方法,提出了一种改进的概率密度演化方法(PDEM)方案以解决高维结构可靠性分析中固有的挑战。在该方法中,开发了KPCA-GPR模型,其中基于Kernel主成分分析(KPCA)的基于非线性尺寸减小和高斯过程回归(GPR)代理模型通过联合培训方案组合。在这方面,鉴定的KPCA的子空间是最佳的GPR模型的近似精度。然后,使用主动学习(AL)的采样策略构建KPCA-GPR模型,以便准确地近似于在PDEM中涉及的整个代表点的结构响应的等效极值(EEV),其较少样品尽可能。最后,通过从PDEM导出的EEVS概率密度函数的一维积分来容易地评估可靠性。为了说明所提出的Al-KPCA-GPR-PDEM的有效性,研究了两个数值例子,涉及在地震地面运动下具有不同尺寸和剪切框架结构的非线性分析功能的可靠性分析。数值结果表明,在处理高尺寸中的可靠性问题时,AL-KPCA-GPR-PSEM实现了大规模计算成本节省和理想的精度增强。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2021年第5期|107366.1-107366.23|共23页
  • 作者

    Yongbo Peng; Tong Zhou; Jie Li;

  • 作者单位

    State Key Laboratory of Disaster Reduction in Civil Engineering Tongji University 1239 Siping Road Shanghai 200092 PR China Shanghai Institute of Disaster Prevention and Relief Tongji University 1239 Siping Road Shanghai 200092 PR China;

    State Key Laboratory of Disaster Reduction in Civil Engineering Tongji University 1239 Siping Road Shanghai 200092 PR China College of Civil Engineering Tongji University 1239 Siping Road Shanghai 200092 PR China;

    State Key Laboratory of Disaster Reduction in Civil Engineering Tongji University 1239 Siping Road Shanghai 200092 PR China College of Civil Engineering Tongji University 1239 Siping Road Shanghai 200092 PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Kernel principal component analysis; Gaussian process regression; Active learning; Probability density evolution method; Structural reliability; High dimensions;

    机译:内核主成分分析;高斯过程回归;主动学习;概率密度进化法;结构可靠性;高尺寸;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号