机译:使用新型混合深神经网络的盾构隧道机的精确切割机扭矩预测
State Key Laboratory of Mechanical System and Vibration School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China;
State Key Laboratory of Mechanical System and Vibration School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China;
State Key Laboratory of Mechanical System and Vibration School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China;
State Key Laboratory of Mechanical System and Vibration School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China;
State Key Laboratory of Mechanical System and Vibration School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China;
State Key Laboratory of Mechanical System and Vibration School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China;
State Key Laboratory of Mechanical System and Vibration School of Mechanical Engineering Shanghai Jiao Tong University Shanghai 200240 China;
Shield tunneling machine; Automatic load prediction; Hybrid deep neural network; Cutterhead torque; Input dimension reduction; Prediction performance;
机译:基于VMD-EWT-LSTM的屏蔽隧道机切割机扭矩的多步预测方法
机译:EPB盾构掘进机刀盘扭矩的确定
机译:一种基于负载特性预测的屏蔽隧道机的切割机节能技术
机译:混合编解码器深度网络,用于将神经驱动信息解码为精确的肌肉力估计*
机译:电子零件价格的预测:从经典的统计和机器学习模型到具有特征嵌入的深度神经网络
机译:关于进化混合神经网络方法预测盾构隧道诱导地面沉降的数据
机译:一种基于负载特性预测的屏蔽隧道机的切割机节能技术