首页> 外文期刊>Mechanical systems and signal processing >A noise reduction method based on adaptive weighted symplectic geometry decomposition and its application in early gear fault diagnosis
【24h】

A noise reduction method based on adaptive weighted symplectic geometry decomposition and its application in early gear fault diagnosis

机译:一种基于自适应加权辛几何分解的降噪方法及其在早期齿轮故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

When the gear appears early fault, it will be accompanied by strong background noise, and the fault information is weak. Therefore, the result of noise reduction often determines whether the early gear fault can be accurately diagnosed. However, there are many defects in the existing methods of noise reduction. Wavelet decomposition (WT) requires setting parameters manually, and it is not adaptive. The ensemble empirical mode decomposition (EEMD) still has mode aliasing and endpoint effects. The singular spectrum analysis (SSA) and symplectic geometry mode decomposition (SGMD) select the useful components by energy size, which will delete the components with more fault information but less energy. Therefore, an adaptive weighted symplectic geometry decomposition (AWSGD) method is proposed for noise reduction in this paper. On the one hand, AWSGD is adaptive without setting parameters manually. On the other hand, AWSGD defines cycle kurtosis (CK) and periodic impact intensity (PII). CK is used to characterize the strength of periodic impact in the component, and PII is used to measure the fault information amount of the component. It can avoid the defect of the traditional noise reduction method by energy size. The noise reduction results of emulational and experimental signals show that AWSGD has excellent performance in noise reduction.
机译:当齿轮出现早期故障时,它将伴随着强大的背景噪声,故障信息很弱。因此,降噪结果通常可以确定是否可以准确诊断早期齿轮故障。然而,现有的降噪方法中存在许多缺陷。小波分解(WT)需要手动设置参数,并且它不是自适应。集合经验模式分解(EEMD)仍具有模式叠开和端点效果。奇异频谱分析(SSA)和辛几何模式分解(SMD)通过能量大小选择有用的组件,这将删除具有更多故障信息但能量更少的组件。因此,提出了本文的噪声减少的自适应加权辛旋律几何分解(AWSGD)方法。一方面,AWSGD在没有手动设置参数的情况下自适应。另一方面,AWSGD定义了循环峰(CK)和周期性冲击强度(PII)。 CK用于表征组件中周期性的强度,并且PII用于测量组件的故障信息量。它可以通过能量尺寸避免传统降噪方法的缺陷。仿真和实验信号的降噪结果表明AWSGD具有出色的降噪性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号