首页> 外文期刊>Mechanical systems and signal processing >A two-stage blind deconvolution strategy for bearing fault vibration signals
【24h】

A two-stage blind deconvolution strategy for bearing fault vibration signals

机译:轴承故障振动信号的两阶段盲反褶积策略

获取原文
获取原文并翻译 | 示例

摘要

The presence of periodic sparse impulses in vibration signals often indicates the occurrence of machine faults. This study focuses on the detection and diagnosis of an exact fault in bearings. As a matter of fact, the measured bearing fault signal corresponds to the convolution between periodic impulses, caused by periodic shocks in a faulty bearing, and the impulse response function of the mechanical system. However, the measured periodic impulses are generally weak and dominated by noise and other interferences. In this scenario, this paper introduces a novel approach to identify and restore periodic transients due to bearing faults through a deconvolution process based on sparsity. The proposed two-stage deconvolution strategy is based on an adapted Continuous Single Best Replacement algorithm. The major benefit of this blind deconvolution technique is the ability to estimate the impulses by exploiting a bearing fault model. The application on simulated and experimental data shows the effectiveness of this method in recovering the periodic impulses.
机译:振动信号中周期性的稀疏脉冲的存在通常指示机器故障的发生。这项研究的重点是轴承的精确故障的检测和诊断。实际上,测得的轴承故障信号对应于由故障轴承中的周期性冲击引起的周期性脉冲与机械系统的脉冲响应函数之间的卷积。但是,所测得的周期性脉冲通常较弱,并且受噪声和其他干扰的支配。在这种情况下,本文介绍了一种新颖的方法,该方法通过基于稀疏性的反卷积过程来识别和恢复由于轴承故障引起的周期性瞬变。所提出的两阶段反卷积策略基于改进的连续单个最佳替换算法。这种盲解卷积技术的主要好处是能够通过利用轴承故障模型来估计脉冲。在模拟和实验数据上的应用表明了该方法在恢复周期性脉冲中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号