首页> 外文期刊>Mechanical systems and signal processing >An expectation-maximization algorithm for Bayesian operational modal analysis with multiple (possibly close) modes
【24h】

An expectation-maximization algorithm for Bayesian operational modal analysis with multiple (possibly close) modes

机译:具有多个(可能是接近的)模式的贝叶斯操作模态分析的期望最大化算法

获取原文
获取原文并翻译 | 示例

摘要

The Bayesian FFT method has gained attention in operational modal analysis of civil engineering structures. Not only the most probable value (MPV) of modal parameters can be computed efficiently, but also the identification uncertainty can be rigorously quantified in terms of posterior covariance matrix. A recently developed fast algorithm for general multiple (possibly close) modes was found to work well in most cases, but convergence could be slow or even fail in challenging situations. The algorithm is also tedious to computer-code. Aiming at resolving these issues, an expectation-maximization (EM) algorithm is developed by viewing the modal response as a latent variable. The parameter-expansion EM and the parabolic-extrapolation EM are further adopted, allowing mode shape norm constraints to be incorporated and accelerating convergence, respectively. A robust implementation is provided based on the QR and Cholesky decompositions, so that the computation can be done efficiently and reliably. Empirical studies verify the performance of the proposed EM algorithm. It offers a more efficient and robust (in terms of convergence) alternative that can be especially useful when the existing algorithm has difficulty to converge. In addition, it opens a way to compute the MPV in the Bayesian FFT method for other unexplored cases, e.g., multi-mode multi-setup problem.
机译:贝叶斯FFT方法已引起人们对土木工程结构的运行模态分析的关注。不仅可以有效地计算模态参数的最可能值(MPV),而且可以根据后协方差矩阵对量化的不确定性进行严格量化。人们发现,在大多数情况下,针对通用的多种(可能是接近的)模式开发的快速算法在大多数情况下都可以很好地工作,但是在挑战性的情况下收敛可能会很慢甚至失败。该算法对于计算机代码也很繁琐。为了解决这些问题,通过将模态响应视为潜在变量来开发期望最大化(EM)算法。进一步采用了参数扩展EM和抛物线外推EM,分别允许合并模态范数约束并加速收敛。基于QR和Cholesky分解提供了一种鲁棒的实现,因此可以高效,可靠地进行计算。实证研究证明了所提出的EM算法的性能。它提供了更有效,更健壮(就收敛而言)的替代方案,当现有算法难以收敛时,该替代方案尤其有用。另外,它开辟了一种方法来计算贝叶斯FFT方法中的MPV,以解决其他未探索的情况,例如多模式多设置问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号