首页> 外文期刊>Mechanical systems and signal processing >A new data-driven transferable remaining useful life prediction approach for bearing under different working conditions
【24h】

A new data-driven transferable remaining useful life prediction approach for bearing under different working conditions

机译:一种新的数据驱动的可转让剩余使用寿命预测方法,用于不同工作条件下的轴承

获取原文
获取原文并翻译 | 示例

摘要

Remaining useful life (RUL) estimation plays a pivotal role in ensuring the safety of a machine, which can further reduce the cost by unwanted downtime or failures. A variety of data-driven methods based on artificial intelligence have been proposed to predict RUL of key component such as bearing. However, many existing approaches have the following two shortcomings: 1) the fault occurrence time (FOT) is ignored or selected subjectively; 2) the training and testing data follow the same data distribution. Inappropriate FOT will either include unrelated information such as noise or reduce critical degradation information. The prognostic model trained with dataset in one working condition can not generalize well on dataset from another different working condition owing to distribution discrepancy. In this paper, to handle these two shortcomings, hidden Markov model (HMM) is first employed to automatically detect state change so that FOT can be located. Then a novel transfer learning method based on multiple layer perceptron (MLP) is presented to solve distribution discrepancy problem. Experiment study on RUL estimation of bearing is analyzed to illustrate the effectiveness of the proposed method. The results demonstrate that the proposed framework can detect FOT adaptively, at the same time provide reliable transferable prognostics performance under different working conditions.
机译:剩余使用寿命(RUL)估计在确保机器安全方面起着举足轻重的作用,这可以通过意外的停机或故障来进一步降低成本。已经提出了多种基于人工智能的数据驱动方法来预测关键组件(例如轴承)的RUL。然而,许多现有的方法有以下两个缺点:1)故障发生时间(FOT)被主观忽略或选择; 2)训练和测试数据遵循相同的数据分布。不当的FOT将包含不相关的信息(例如噪声)或减少严重的降级信息。由于分布差异,在一个工作条件下用数据集训练的预后模型不能很好地推广到另一工作条件下的数据集。在本文中,为了解决这两个缺点,首先使用隐马尔可夫模型(HMM)自动检测状态变化,以便可以定位FOT。然后,提出了一种基于多层感知器(MLP)的转移学习方法,以解决分配差异问题。分析了轴承的RUL估计的实验研究,以说明该方法的有效性。结果表明,提出的框架可以自适应地检测FOT,同时在不同的工作条件下提供可靠的可转移的预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号