首页> 外文期刊>Mechanical systems and signal processing >A general anomaly detection framework for fleet-based condition monitoring of machines
【24h】

A general anomaly detection framework for fleet-based condition monitoring of machines

机译:基于机队状态机器的通用异常检测框架

获取原文
获取原文并翻译 | 示例

摘要

Machine failures decrease up-time and can lead to extra repair costs or even to human casualties and environmental pollution. Recent condition monitoring techniques use artificial intelligence in an effort to avoid time-consuming manual analysis and handcrafted feature extraction. Many of these only analyze a single machine and require a large historical data set. In practice, this can be difficult and expensive to collect. However, some industrial condition monitoring applications involve a fleet of similar operating machines. In most of these applications, it is safe to assume healthy conditions for the majority of machines. Deviating machine behavior is then an indicator for a machine fault. This work proposes an unsupervised, generic, anomaly detection framework for fleet-based condition monitoring. It uses generic building blocks and offers three key advantages. First, a historical data set is not required due to online fleet-based comparisons. Second, it allows incorporating domain expertise by user-defined comparison measures. Finally, contrary to most black-box artificial intelligence techniques, easy interpretability allows a domain expert to validate the predictions made by the framework. Two use-cases on an electrical machine fleet demonstrate the applicability of the framework to detect a voltage unbalance by means of electrical and vibration signatures.
机译:机器故障会减少正常运行时间,并可能导致额外的维修成本,甚至导致人员伤亡和环境污染。最近的状态监视技术使用人工智能来避免费时的手动分析和手工特征提取。其中许多仅分析一台机器,并且需要大量的历史数据集。在实践中,收集起来可能很困难且昂贵。但是,某些工业状况监视应用程序涉及许多类似的操作机器。在大多数这些应用中,对于大多数机器而言,假设健康状况是安全的。机器行为的偏离则是机器故障的指示器。这项工作提出了一个无监督的,通用的,基于舰队状态监测的异常检测框架。它使用通用的构建基块,并提供三个主要优势。首先,由于基于在线车队的比较,因此不需要历史数据集。其次,它允许通过用户定义的比较措施来合并领域专业知识。最后,与大多数黑盒人工智能技术相反,易于解释的特性使领域专家可以验证框架所做的预测。电机机群上的两个用例证明了该框架通过电气和振动信号检测电压不平衡的适用性。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2020年第5期|106585.1-106585.21|共21页
  • 作者单位

    Siemens Digital Industries Software. Interleuvenlaan 68 3007 Leuven Belgium KU Leuven Department of Computer Science Celestijnenlaan 200A box 2402 3001 Leuven Belgium;

    KU Leuven Department of Computer Science Celestijnenlaan 200A box 2402 3001 Leuven Belgium;

    Siemens Digital Industries Software. Interleuvenlaan 68 3007 Leuven Belgium Universite Libre de Bruxelles BEAMS Avenue Franklin Roosevelt 50 (CP165/52) 1050 Brussels Belgium;

    Universite Libre de Bruxelles BEAMS Avenue Franklin Roosevelt 50 (CP165/52) 1050 Brussels Belgium;

    Siemens Digital Industries Software. Interleuvenlaan 68 3007 Leuven Belgium;

    KU Leuven Department of Mechanical Engineering Celestijnenlaan 300 3001 Leuven Belgium Dynamics of Mechanical and Mechatronic Systems Flanders Make Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Anomaly detection; Clustering; Fleet monitoring; Condition monitoring; Electrical motors;

    机译:异常检测;集群;车队监控;状态监测;电动机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号