首页> 外文期刊>Mechanical systems and signal processing >Bayesian probabilistic damage characterization based on a perturbation model using responses at vibration nodes
【24h】

Bayesian probabilistic damage characterization based on a perturbation model using responses at vibration nodes

机译:基于扰动模型的贝叶斯概率损伤特征分析

获取原文
获取原文并翻译 | 示例

摘要

One important topic for structural health monitoring methods is to find a balance in the number of sensors, the accuracy in damage detection and the requirement of a high-fidelity finite element model. Traditional deterministic damage detection techniques with a limited number of sensors can only provide coarse point estimates, and they can be vulnerable to uncertainties such as noise and changing environments. This paper adopts the Bayesian probabilistic approach combined with a perturbation model for probabilistic damage characterization utilizing dynamic responses at a few vibration nodes. Vibrational amplitudes at nodal points, also referred as node displacement or NODIS, can be considered to be an efficient structural damage indicator because they have the potential to achieve real-time damage assessment with a relatively small number of sensors. In the Bayesian framework, an efficient perturbation-based surrogate model is adopted to replace the FE model which is computationally costly. This paper proposes a vibration-based SHM method that is suitable for real-time monitoring, requires a small number of industrial sensors, does not rely on a high-fidelity FE model and can be applied for damage assessment of location and severity. The performance of the NODIS-based Bayesian framework with the perturbation method is evaluated and compared with FE results. The proposed method is applied to a supporting structure of a sailplane under different environmental temperatures.
机译:结构健康监测方法的一个重要主题是找到传感器数量,损伤检测的准确性以及对高保真有限元模型的要求之间的平衡。具有有限数量的传感器的传统确定性损坏检测技术只能提供粗略的点估计,并且容易受到不确定性(例如噪声和环境变化)的影响。本文采用贝叶斯概率方法结合扰动模型,利用在几个振动节点处的动态响应来表征概率损伤。节点处的振动幅度(也称为节点位移或NODIS)可以被认为是有效的结构损伤指标,因为它们具有用相对较少数量的传感器实现实时损伤评估的潜力。在贝叶斯框架中,采用了一种有效的基于扰动的替代模型来代替计算量大的有限元模型。本文提出了一种基于振动的SHM方法,适用于实时监测,需要少量的工业传感器,不依赖于高保真FE模型,可用于位置和严重性的损伤评估。评估了基于NODIS的贝叶斯框架的摄动方法的性能,并将其与有限元结果进行了比较。所提出的方法应用于不同环境温度下的帆板支撑结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号