首页> 外文期刊>Mechanical systems and signal processing >Passive sensing method for impact localisation in composite plates under simulated environmental and operational conditions
【24h】

Passive sensing method for impact localisation in composite plates under simulated environmental and operational conditions

机译:模拟环境和运行条件下复合板冲击定位的被动传感方法

获取原文
获取原文并翻译 | 示例

摘要

A novel feature extraction method is developed for impact localisation based on Artificial Neural Networks (ANNs) in sensorized Composite structures subjected to environmental and operational conditions. Impact induced lamb waves are investigated for the first time for different impact scenarios (angle, mass and energy) on flat and curved plates under environmental (temperature range) and operational (vibration) conditions. The Time of Arrival (TOA) is significantly influenced by these conditions hence complicating the impact localisation. To overcome this complication, a novel and robust TOA extraction method is proposed. It is based on Normalised Smoothed Envelope Threshold (NSET) coupled with a high pass filter to remove vibration noise prior to TOA extraction. Localisation ANNs were trained with data from a single baseline impact condition and were tested under impacts with varying conditions. It was shown that by using the proposed method for TOA extraction, the trained ANN is able to better predict the location of impacts compared to an ANN trained with data from common TOA extraction methods (detection area 0.99-56.08% of sensing region versus 0.28-1.55% for NSET). The developed method gives consistent accuracy and significantly reduces the required training data, making ANN based impact localisation more feasible for real life application. (C) 2019 Elsevier Ltd. All rights reserved.
机译:开发了一种新的特征提取方法,该方法基于人工神经网络(ANN)在受环境和操作条件影响的复合材料结构中进行冲击定位。首次在环境(温度范围)和操作(振动)条件下,针对平板和弯曲板上的不同撞击场景(角度,质量和能量),研究了撞击引起的兰姆波。这些条件极大地影响了到达时间(TOA),因此使影响范围变得复杂。为了克服这种复杂性,提出了一种新颖且鲁棒的TOA提取方法。它基于归一化平滑包络阈值(NSET)和高通滤波器,可在TOA提取之前消除振动噪声。本地化人工神经网络接受了来自单个基线影响条件的数据的培训,并在变化条件下的影响下进行了测试。结果表明,与使用普通TOA提取方法训练的ANN相比,通过使用拟议的TOA提取方法,经过训练的ANN能够更好地预测影响的位置(检测区域的感测区域为0.99-56.08%,而检测区域为0.28-对于NSET为1.55%)。所开发的方法具有一致的准确性,并显着减少了所需的训练数据,从而使基于ANN的影响定位在实际应用中更加可行。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号