首页> 外文期刊>Mechanical systems and signal processing >An active failure-pursuing Kriging modeling method for time-dependent reliability analysis
【24h】

An active failure-pursuing Kriging modeling method for time-dependent reliability analysis

机译:时变可靠性分析的主动故障追踪克里格建模方法

获取原文
获取原文并翻译 | 示例

摘要

Some time-dependent reliability analysis methods use surrogate models to approximate the implicit limit state functions of complex systems. However, the performance of these methods is usually affected by the situations that the used models are not accurate and some samples have no significant contribution to the accuracy improvement. To construct a more suitable model for reliability analysis, this work proposes an active failure-pursuing Kriging modeling method to identify the most valuable samples for improving the accuracy of the predicted failure probability. On the one hand, a global predicted failure probability error index calculated through the real-time reliability result is proposed to pursue the sensitive sample and the corresponding local region that is most likely to maximize the improvement of the accuracy of the reliability result. A fault-tolerant scheme is further applied to ensure the accuracy of the failure-pursuing process. On the other hand, the correlation-based screening and space partition strategy is developed to describe the local regions and avoid the clustering of samples. In each iteration, the Kriging model is updated with the exploitation of new sample from the local regions around the sensitive samples. Additionally, an equivalent stochastic process transformation is developed to form a uniform high probability density sampling space. The results of three cases demonstrate the efficiency, accuracy and stability of the proposed method. (C) 2019 Elsevier Ltd. All rights reserved.
机译:一些与时间有关的可靠性分析方法使用代理模型来近似复杂系统的隐式极限状态函数。但是,这些方法的性能通常会受到以下情况的影响:所使用的模型不准确,并且某些样本对准确性的提高没有重大贡献。为了构建更合适的可靠性分析模型,这项工作提出了一种主动的故障追踪Kriging建模方法,以识别最有价值的样本,从而提高预测故障概率的准确性。一方面,提出了一种通过实时可靠性结果计算的全局预测失效概率误差指标,以追踪敏感样本和最有可能最大程度提高可靠性结果准确性的相应局部区域。进一步采用了容错方案以确保故障追踪过程的准确性。另一方面,开发了基于相关性的筛选和空间划分策略来描述局部区域并避免样本聚类。在每次迭代中,使用来自敏感样本周围局部区域的新样本来更新Kriging模型。另外,开发了等效的随机过程变换以形成统一的高概率密度采样空间。三种情况的结果证明了该方法的有效性,准确性和稳定性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2019年第15期|112-129|共18页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Time-dependent reliability analysis; Active failure-pursuing strategy; Stochastic process transformation; Sampling space partition; Kriging modeling;

    机译:时变可靠性分析;主动故障跟踪策略;随机过程转换;采样空间划分;克里格建模;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号