首页> 外文期刊>Mechanical systems and signal processing >Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis
【24h】

Periodic impulses extraction based on improved adaptive VMD and sparse code shrinkage denoising and its application in rotating machinery fault diagnosis

机译:基于改进的VMD和稀疏码收缩降噪的周期脉冲提取及其在旋转机械故障诊断中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The presence of periodic impulses in vibration signals is a typical symptom of localized faults of rotating machinery. It is of great significance to study how to effectively extract the periodic impulses in vibration signals for realizing the fault diagnosis of rotating machinery. Variational mode decomposition (VMD) provides a feasible tool for non stationary signal analysis. However, the reasonable selection of algorithm parameters and under- or over-decomposition problem in VMD hinder its application in engineering signals processing to some extent. Therefore, a new periodic impulses extraction method based on improved adaptive VMD and adaptive sparse code shrinkage denoising is proposed for the fault diagnosis of rotating machinery. The method can adaptively determine the mode number and the penalty factor depending on different signals. Meanwhile, the decomposition results are clustered and combined by using the spectrum overlap coefficient and kurtosis index to eliminate the over decomposition phenomenon and realize the effective extraction of the periodic impulses. The adaptive sparse code shrinkage algorithm is developed to denoise the mode component containing the periodic impulses, further highlighting the impulses and improving the accuracy of fault identification. Simulation data and real data acquired from rolling bearing and gearbox are adopted to verify the effectiveness and superiority of the proposed method compared with other methods. (C) 2019 Elsevier Ltd. All rights reserved.
机译:振动信号中存在周期性脉冲是旋转机械局部故障的典型症状。研究如何有效地提取振动信号中的周期性脉冲对实现旋转机械的故障诊断具有重要意义。变分模式分解(VMD)为非平稳信号分析提供了一种可行的工具。但是,VMD中算法参数的合理选择以及分解不足或分解过度的问题在一定程度上阻碍了其在工程信号处理中的应用。因此,提出了一种基于改进的自适应VMD和自适应稀疏码收缩去噪的周期性脉冲提取方法,用于旋转机械的故障诊断。该方法可以根据不同的信号来自适应地确定模式编号和惩罚因子。同时,利用频谱重叠系数和峰度指数对分解结果进行聚类和合并,消除了过度分解现象,实现了周期脉冲的有效提取。提出了一种自适应稀疏码收缩算法,对包含周期性脉冲的模式分量进行消噪,进一步突出了脉冲,提高了故障识别的准确性。通过从滚动轴承和齿轮箱获取的仿真数据和真实数据,验证了该方法与其他方法的有效性和优越性。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号