首页> 外文期刊>Mechanical systems and signal processing >On choice and effect of weight matrix for response sensitivity-based damage identification with measurement and model errors
【24h】

On choice and effect of weight matrix for response sensitivity-based damage identification with measurement and model errors

机译:权重矩阵的选择和影响,用于基于响应灵敏度的带有测量和模型误差的损伤识别

获取原文
获取原文并翻译 | 示例

摘要

This paper aims to present a thorough view on the choice and effect of the weight matrix for response sensitivity-based damage identification with measurement and/or model errors. The derivation of the optimal weight matrix is mainly twofold. On the one hand, when only measurement errors are involved, the optimal weight matrix is found to be inverse proportional to the measurement error covariance by minimizing the expectation of squares error of the whole identification results. On the other hand, if model errors are additionally considered, the optimal weight matrix then depends not only on the measurement error covariance, but also on the model error covariance. Further analysis reveals that the optimal weight matrix can also make the 'relative error' square-root of expectation of squares error in every individual damage parameter minimized. Then, the effect of the proposed optimal weight matrix with measurement and/or model errors is studied on two typical examples a plane frame and a simply-supported plate. Results show that when hybrid types of measurement data-accelerations, displacements and/or eigenfrequencies are used or when the response data is sensitive to model errors, the optimal weight matrix should be invoked to get reasonably good identification results and the improvements brought by the optimal weight matrix are substantial. The whole work shall be instructive for damage identification when different types of measurements are available and when model errors are non-negligible. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文旨在针对基于响应敏感度的带有测量和/或模型误差的损伤识别的权重矩阵的选择和效果提供一个透彻的见解。最优权重矩阵的推导主要是双重的。一方面,当仅涉及测量误差时,通过最小化整个识别结果的平方误差的期望值,发现最佳权重矩阵与测量误差协方差成反比。另一方面,如果另外考虑模型误差,则最佳权重矩阵不仅取决于测量误差协方差,而且还取决于模型误差协方差。进一步的分析表明,最佳权重矩阵还可以使每个单独损伤参数中平方误差的期望值的“相对误差”平方根最小。然后,在平面框架和简单支撑板这两个典型示例上研究了所提出的最佳权重矩阵对测量和/或模型误差的影响。结果表明,当使用混合类型的测量数据加速度,位移和/或本征频率时,或者当响应数据对模型误差敏感时,应调用最佳权重矩阵以获得合理的良好识别结果,并通过优化获得改进。权重矩阵很大。当可获得不同类型的测量值且模型误差不可忽略时,整个工作应对损坏的识别具有指导意义。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号