首页> 外文期刊>Mechanical systems and signal processing >A probabilistic compressive sensing framework with applications to ultrasound signal processing
【24h】

A probabilistic compressive sensing framework with applications to ultrasound signal processing

机译:概率压缩感知框架及其在超声信号处理中的应用

获取原文
获取原文并翻译 | 示例

摘要

The field of Compressive Sensing (CS) has provided algorithms to reconstruct signals from a much lower number of measurements than specified by the Nyquist-Shannon theorem. There are two fundamental concepts underpinning the field of CS. The first is the use of random transformations to project high-dimensional measurements onto a much lower dimensional domain. The second is the use of sparse regression to reconstruct the original signal. This assumes that a sparse representation exists for this signal in some known domain, manifested by a dictionary. The original formulation for CS specifies the use of an 1, penalised regression method, the Lasso. Whilst this has worked well in literature, it suffers from two main drawbacks. First, the level of sparsity must be specified by the user, or tuned using sub-optimal approaches. Secondly, and most importantly, the Lasso is not probabilistic; it cannot quantify uncertainty in the signal reconstruction. This paper aims to address these two issues; it presents a framework for performing compressive sensing based on sparse Bayesian learning. Specifically, the proposed framework introduces the use of the Relevance Vector Machine (RVM), an established sparse kernel regression method, as the signal reconstruction step within the standard CS methodology. This framework is developed within the context of ultrasound signal processing in mind, and so examples and results of compression and reconstruction of ultrasound pulses are presented. The dictionary learning strategy is key to the successful application of any CS framework and even more so in the probabilistic setting used here. Therefore, a detailed discussion of this step is also included in the paper. The key contributions of this paper are a framework for a Bayesian approach to compressive sensing which is computationally efficient, alongside a discussion of uncertainty quantification in CS and different strategies for dictionary learning. The methods are demonstrated on an example dataset from collected from an aerospace composite panel. Being able to quantify uncertainty on signal reconstruction reveals that this grows as the level of compression increases. This is key when deciding appropriate compression levels, or whether to trust a reconstructed signal in applications of engineering and scientific interest. (C) 2018 The Authors. Published by Elsevier Ltd.
机译:压缩感测(CS)领域提供的算法可从比Nyquist-Shannon定理指定的测量数量少得多的测量中重建信号。 CS领域有两个基本概念。首先是使用随机变换将高维测量投影到低维域上。第二个是使用稀疏回归来重建原始信号。假定在某个已知域中该信号存在稀疏表示,由字典来表示。 CS的原始公式指定使用1罚回归方法Lasso。尽管这在文学中表现良好,但它有两个主要缺点。首先,稀疏级别必须由用户指定,或使用次优方法进行调整。其次,也是最重要的是,套索不是概率的。它不能量化信号重建中的不确定性。本文旨在解决这两个问题。它提出了一种基于稀疏贝叶斯学习进行压缩感知的框架。具体而言,提出的框架引入了相关向量机(RVM)(一种已建立的稀疏核回归方法)的使用,作为标准CS方法中的信号重建步骤。在考虑到超声信号处理的背景下开发了该框架,因此给出了压缩和重建超声脉冲的示例和结果。词典学习策略是任何CS框架成功应用的关键,在此处使用的概率设置中,更是如此。因此,本文中还包含有关此步骤的详细讨论。本文的主要贡献是一种贝叶斯压缩感知方法的框架,该框架在计算上是有效的,此外还讨论了CS中的不确定性量化和字典学习的不同策略。这些方法在从航空航天复合材料板收集的示例数据集中进行了演示。能够量化信号重建的不确定性表明,随着压缩水平的提高,不确定性会增加。在确定适当的压缩级别或在工程和科学应用中是否信任重构信号时,这是关键。 (C)2018作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号