首页> 外文期刊>Mechanical systems and signal processing >Using polynomial chaos expansion for uncertainty and sensitivity analysis of bridge structures
【24h】

Using polynomial chaos expansion for uncertainty and sensitivity analysis of bridge structures

机译:利用多项式混沌展开进行桥梁结构的不确定性和灵敏度分析

获取原文
获取原文并翻译 | 示例

摘要

The quantification of the uncertainty effect of random system parameters, such as the loading conditions, material and geometric properties, on the system output response has gained significant attention in recent years. One of the well-known methods is the first order second-moment (FOSM) method, which can be used to determine the mean value and variance of the system output. However, this method needs to derive the formulas for calculating the local sensitivity and it can only be used for systems with low-level uncertainties. Polynomial Chaos (PC) expansion is a new non-sampling-based method to evaluate the uncertainty evolution and quantification of a dynamical system. In this paper, PC expansion is used to represent the stochastic system output responses of civil bridge structures, which could be the natural frequencies, linear and nonlinear dynamic responses. The PC coefficients are obtained from the non-intrusive regression based method, and the statistical characteristic can be evaluated from these coefficients. The results from the proposed approach are compared with those calculated with commonly used methods, such as Monte Carlo Simulation (MCS) and FOSM. The accuracy and efficiency of the presented PC based method for uncertainty quantification and global sensitivity analysis are investigated. Global sensitivity analysis is performed to quantify the effect of uncertainty in each random system parameter on the variance of the stochastic system output response, which can be obtained directly from the PC coefficients. The results demonstrate that PC expansion can be a powerful and efficient tool for uncertainty quantification and sensitivity analysis in linear and nonlinear structure analysis. (C) 2018 Elsevier Ltd. All rights reserved.
机译:近年来,量化随机系统参数(例如加载条件,材料和几何特性)对系统输出响应的不确定性影响已引起了广泛关注。一种众所周知的方法是一阶二阶矩(FOSM)方法,该方法可用于确定系统输出的平均值和方差。但是,该方法需要推导用于计算局部灵敏度的公式,并且只能用于不确定性较低的系统。多项式混沌(PC)扩展是一种新的基于非采样的方法,用于评估动力学系统的不确定性演变和量化。在本文中,PC扩展用于表示民用桥梁结构的随机系统输出响应,可以是固有频率,线性和非线性动力响应。 PC系数是从基于非介入回归的方法中获得的,统计特性可以从这些系数中进行评估。将所提方法的结果与使用常用方法(例如蒙特卡罗模拟(MCS)和FOSM)计算的结果进行比较。研究了基于PC的不确定性量化和全局灵敏度分析方法的准确性和效率。进行全局灵敏度分析以量化每个随机系统参数中的不确定性对随机系统输出响应方差的影响,可以直接从PC系数获得该随机系统输出响应的方差。结果表明,PC扩展可以成为线性和非线性结构分析中的不确定性量化和灵敏度分析的强大而有效的工具。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号