首页> 外文期刊>Mechanical systems and signal processing >Design sensitivity analysis for transient response of non-viscously clamped systems based on direct differentiate method
【24h】

Design sensitivity analysis for transient response of non-viscously clamped systems based on direct differentiate method

机译:基于直接微分法的非粘性夹紧系统瞬态响应设计灵敏度分析

获取原文
获取原文并翻译 | 示例

摘要

Calculation of the first and second derivatives of transient response with respect to design variables is a prerequisite when gradient-based methods are adopted for optimization design in time-domain. In this paper, a design sensitivity analysis (DSA) method for calculating the first and second derivatives of the transient response for non-viscously damped systems is developed. The assumed damping forces depend on the past history of motion via convolution integrals over some kernel functions. The direct differentiate method (DDM) is selected to derive the DSA method. By introducing a generalized damping model in expression of fraction formula, the equations of motion of the non-viscously damped system are transformed into a state-space form without the convolution integral terms. Then, the first and second derivatives of the transient response are formulated based on a modified precise integration method using the DDM. The numerical stability, accuracy and implementation effort of the DDM are discussed. Two numerical examples are comparatively demonstrated using the DDM, the discretize-then-differentiate adjoint variable method (AVM) and the differentiate-then-discretize AVM. The results indicate that, by considering all the computational considerations, the proposed DDM is more suitable than the other two methods for the sensitivity analysis of transient response for non-viscously damped systems. Besides, it is also the only existing method to capture the second-order derivatives of transient response for the non-viscously damped systems. (C) 2018 Elsevier Ltd. All rights reserved.
机译:当采用基于梯度的方法进行时域优化设计时,计算相对于设计变量的瞬态响应的一阶和二阶导数是前提。本文提出了一种设计灵敏度分析(DSA)方法,用于计算非粘滞阻尼系统的瞬态响应的一阶和二阶导数。假定的阻尼力取决于过去的运动历史,这些运动是通过一些内核函数上的卷积积分实现的。选择直接微分法(DDM)来导出DSA方法。通过在分数公式的表达式中引入广义阻尼模型,将非粘性阻尼系统的运动方程式转换为状态空间形式而无需卷积积分项。然后,基于修改后的精确积分方法,使用DDM制定瞬态响应的一阶和二阶导数。讨论了DDM的数值稳定性,准确性和实现工作。使用DDM分别比较了两个数值示例:离散然后微分伴随变量方法(AVM)和离散然后离散AVM。结果表明,考虑到所有计算方面的考虑,提出的DDM比其他两种方法更适合用于非粘滞阻尼系统的瞬态响应灵敏度分析。此外,对于非粘滞阻尼系统,它也是捕获瞬态响应的二阶导数的唯一现有方法。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号