首页> 外文期刊>Mechanical systems and signal processing >A novel multi-segment feature fusion based fault classification approach for rotating machinery
【24h】

A novel multi-segment feature fusion based fault classification approach for rotating machinery

机译:一种新颖的基于多段特征融合的旋转机械故障分类方法

获取原文
获取原文并翻译 | 示例

摘要

Accurate and efficient rotating machinery fault diagnosis is crucial for industries to guarantee the productivity and reduce the maintenance cost. This paper systematically proposes a new fault diagnosis approach including signal processing techniques and pattern recognition method. In order to reveal more useful details in a fault residing signal, a novel automatic signal segmentation method named Grassmann manifold - angular central Gaussian distribution is proposed to divide a raw signal into several segments, resulting in a significant improvement of diagnosis accuracy. An improved empirical mode decomposition, wavelet transform - ensemble empirical mode decomposition, is also designed which could adequately solve the problems of mode mixing and end effects. Moreover, a morphological method usually used in image processing is investigated and adopted to change the shape of the intrinsic mode functions to further reveal the faulty impulses. In order to reduce the high dimension of the extracted features and improve the computational efficiency and accuracy, a deep belief network is designed to conduct information fusion, and compared with widely adopted kernel principal component analysis. For classification, a pairwise coupling strategy is proposed and combined with sparse Bayesian extreme learning machine. The experiments conducted using the proposed approach demonstrate the effectiveness of the proposed system. (C) 2018 Elsevier Ltd. All rights reserved.
机译:准确,高效的旋转机械故障诊断对于确保生产率和降低维护成本至关重要。本文系统地提出了一种新的故障诊断方法,包括信号处理技术和模式识别方法。为了揭示故障信号中更多有用的细节,提出了一种新颖的自动信号分割方法,称为格拉斯曼流形-角度中心高斯分布,将原始信号分为多个部分,从而大大提高了诊断准确性。还设计了一种改进的经验模态分解小波变换-集成经验模态分解,可以充分解决模态混合和最终效应的问题。此外,研究了通常在图像处理中使用的形态学方法,并采用了这种方法来改变固有模式函数的形状,以进一步揭示故障脉冲。为了减少提取特征的高维数并提高计算效率和准确性,设计了深度信念网络进行信息融合,并与广泛采用的核主成分分析进行了比较。对于分类,提出了一种成对耦合策略,并与稀疏贝叶斯极限学习机结合。使用提出的方法进行的实验证明了提出的系统的有效性。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号