首页> 外文期刊>Mathematics of Control, Signals, and Systems (MCSS) >Well-posedness, regularity and exact controllability of the SCOLE model
【24h】

Well-posedness, regularity and exact controllability of the SCOLE model

机译:SCOLE模型的适定性,规律性和精确可控性

获取原文
获取原文并翻译 | 示例

摘要

The SCOLE model is a coupled system consisting of a flexible beam (modelled as an Euler–Bernoulli equation) with one end clamped and the other end linked to a rigid body. Its inputs are the force and the torque acting on the rigid body. It is well-known that the SCOLE model is not exactly controllable with L 2 input signals in the natural energy state space H c , because the control operator is bounded from the input space to H c , and hence compact. We regard the velocity and the angular velocity of the rigid body as the output signals of this system. Using the theory of coupled linear systems (one infinite-dimensional and one finite-dimensional) developed by us recently in another paper, we show that the SCOLE model is well-posed, regular and exactly controllable in arbitrarily short time when using a certain smoother state space .
机译:SCOLE模型是一个耦合系统,由一个柔性梁(建模为Euler–Bernoulli方程)组成,一端被夹紧,另一端被连接到刚体上。它的输入是作用在刚体上的力和扭矩。众所周知,在自然能状态空间H c 中,使用L 2 输入信号无法精确控制SCOLE模型,因为控制运算符受输入限制H c 的空间,因此紧凑。我们将刚体的速度和角速度视为该系统的输出信号。使用我们最近在另一篇论文中开发的耦合线性系统(一个无限维和一个有限维)理论,我们证明,当使用某种平滑器时,SCOLE模型在任意短时间内都具有良好的定位性,规则性和精确可控性状态空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号