首页> 外文期刊>Mathematics in Computer Science >Superposition Decides the First-Order Logic Fragment Over Ground Theories
【24h】

Superposition Decides the First-Order Logic Fragment Over Ground Theories

机译:叠加决定地面理论上的一阶逻辑片段

获取原文
获取原文并翻译 | 示例

摘要

The hierarchic superposition calculus over a theory T, called SUP(T), enables sound reasoning on the hierarchic combination of a theory T with full first-order logic, FOL(T). If a FOL(T) clause set enjoys a sufficient completeness criterion, the calculus is even complete. Clause sets over the ground fragment of FOL(T) are not sufficiently complete, in general. In this paper we show that any clause set over the ground FOL(T) fragment can be transformed into a sufficiently complete one, and prove that SUP(T) terminates on the transformed clause set, hence constitutes a decision procedure provided the existential fragment of the theory T is decidable. Thanks to the hierarchic design of SUP(T), the decidability result can be extended beyond the ground case. We show SUP(T) is a decision procedure for the non-ground FOL fragment plus a theory T, if every non-constant function symbol from the underlying FOL signature ranges into the sort of the theory T, and every term of the theory sort is ground. Examples for T are in particular decidable fragments of arithmetic.
机译:理论T上称为SUP(T)的层次叠加演算,可以对理论T与完全一阶逻辑FOL(T)的层次组合进行合理的推理。如果FOL(T)子句集具有足够的完整性准则,则算术甚至是完整的。通常,FOL(T)的基础片段上的子句集​​不够完整。在本文中,我们证明了可以将地面FOL(T)片段上设置的任何子句转换为足够完整的子句,并证明SUP(T)在转换后的子句集合上终止,从而构成一个决策过程,前提是存在以下条件:理论T是可以决定的。由于SUP(T)的分层设计,可判定性结果可以扩展到实际情况之外。我们证明如果基础FOL签名中的每个非恒定函数符号都属于理论T的类别以及理论类别的每个术语,则SUP(T)是非地面FOL片段加理论T的决策程序。是地面。 T的示例尤其是可确定的算术片段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号