首页> 外文期刊>Mathematics and computers in simulation >Solving a singular beam equation by the method of energy boundary functions
【24h】

Solving a singular beam equation by the method of energy boundary functions

机译:通过能量边界函数方法求解奇异梁方程

获取原文
获取原文并翻译 | 示例

摘要

For a static singular beam equation and a static non-uniform beam equation under external static loads, we develop boundary functions method (BFM) and energy boundary functions method (EBFM) to find the deflection curves, which automatically satisfy the boundary conditions. Furthermore, the EBFM is also designed to preserve the energy. Both methods can quickly find accurate numerical solutions of static beam equations, and depict well the singular boundary layer behavior that appeared in the second-order differential term for the simply-supported and two-end fixed beams, and in the third-order differential term for the cantilever beam. Owing to the preservation of both the boundary conditions and energy, the EBFM is superior than the BFM, the shooting method, the weak-form method as well as the weak-form exponential trial functions method.
机译:对于静态奇异波束方程和外部静态负载下的静态非均匀光束方程,我们开发边界功能方法(BFM)和能量边界功能方法(EBFM)以找到偏转曲线,它自动满足边界条件。 此外,EBFM还被设计用于保护能量。 两种方法都可以快速找到静态光束方程的准确数字解,并且描绘了以简单支持的和两端固定光束的二阶差分术语中出现的奇异边界层行为,以及在三阶差分术语中 对于悬臂梁。 由于保护边界条件和能量,EBFM优于BFM,拍摄方法,弱形方法以及弱形指数试验功能方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号