首页> 外文期刊>Mathematics and computers in simulation >A study of the stability for a generalized finite-difference scheme applied to the advection-diffusion equation
【24h】

A study of the stability for a generalized finite-difference scheme applied to the advection-diffusion equation

机译:施加对逆转 - 扩散方程的广义有限差分方案的稳定性研究

获取原文
获取原文并翻译 | 示例

摘要

A great number of phenomena can be modelled by using evolution equations. These equations can model different behaviors according to the problem of interest. The advection-diffusion equation models the dispersion of pollutants in water bodies such as rivers, lakes, and groundwater. In previous works, different results for the stability of generalized finite-difference applied to the advection equation and the diffusion equation have been presented. This paper deals with a study of the stability of a generalized finite-difference approximation of the advection-diffusion equation solved on non-rectangular and highly irregular regions using convex, logically rectangular grids. The discussed bounds for the time step are valid for any second-order finite difference scheme, regardless of a grid structure.
机译:可以通过使用进化方程来建模大量的现象。这些等式可以根据感兴趣的问题模拟不同的行为。平流扩散方程模型模型污染物在水体中的分散,如河流,湖泊和地下水。在以前的作用中,已经介绍了应用于平流方程的广义有限差和扩散方程的稳定性的不同结果。本文涉及使用凸面,逻辑上矩形网格在非矩形和高度不规则区域上求解的平流扩散方程的广义有限差分近似的稳定性研究。无论网格结构如何,时间步长的讨论的界限对于任何二阶有限差分方案有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号