首页> 外文期刊>Mathematics and computers in simulation >Enhanced cultural algorithm to solve multi-objective attribute reduction based on rough set theory
【24h】

Enhanced cultural algorithm to solve multi-objective attribute reduction based on rough set theory

机译:基于粗糙集理论的增强文化算法求解多目标属性约简

获取原文
获取原文并翻译 | 示例

摘要

In extracting hidden information from a data, its high dimension can create challenges in the quality of the extracted information and the search space size. Attribute reduction based on minimizing both missed information and selected subset attributes is logical solution for the challenge. Rough set theory (RST) is an information recognition technique in uncertain data that it shows the value missed information for the selected attributes. In this paper, a multi-objective attribute reduction (MOAR) is modeled by designing a new effective cost function to optimize the minimum number of attributes with the maximum dependency coefficient of the RST. Due to the MOAR is an NP-hard problem, an enhanced draft of cultural algorithm, as a continuous optimization algorithm, is proposed to solve it, as a discrete problem for the first time. The cultural algorithm (CA) with a dual inheritance system is enhanced by utilizing just normative and situational components to generate new individuals and planning a novel heuristic to discrete population and belief spaces. With regard to design the research problem, the CA and five algorithms are implemented to compare their results on twelve well-known UCI datasets in three categories sizes; small, middle and large. The tuning algorithm's parameters to find the best possible values are done and different size of the population is considered to evaluate the sensitivity of the algorithms on the population size parameter. The experimental results show that the proposed algorithm is able to find competitive results when compared to the state-of-the-art algorithms.
机译:在从数据中提取隐藏信息时,其高维可能会在提取信息的质量和搜索空间大小方面带来挑战。基于最小化遗漏信息和所选子集属性的属性减少是应对挑战的逻辑解决方案。粗糙集理论(RST)是一种不确定数据中的信息识别技术,它显示所选属性的值缺失信息。在本文中,通过设计新的有效成本函数来建模多目标属性约简(MOAR),以优化具有RST最大依赖系数的最小属性数。由于MOAR是一个NP难题,因此首次提出了一种文化算法的改进方案,作为一种连续优化算法,以解决该问题。具有双重继承系统的文化算法(CA)通过仅利用规范性和情境性成分来生成新个体并计划针对离散人口和信念空间的新型启发式方法而得到了增强。关于设计研究问题,CA和五种算法被实施来比较它们在三个类别大小的十二个著名的UCI数据集上的结果。小,中,大。完成了寻找最佳可能值的调整算法参数,并考虑了总体大小的不同,以评估算法对总体大小参数的敏感性。实验结果表明,与最新算法相比,该算法能够找到有竞争力的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号