首页> 外文期刊>Mathematics and computers in simulation >A low dimensional descriptor for detection of anomalies in crowd videos
【24h】

A low dimensional descriptor for detection of anomalies in crowd videos

机译:用于检测人群视频异常的低维描述符

获取原文
获取原文并翻译 | 示例

摘要

In this paper a novel descriptor is proposed for anomaly detection in crowd videos at a global level. Traditional approaches for anomaly detection in crowd videos face the dilemma of trade-off between high accuracy and real time performance. In order to resolve this issue, we propose an efficient descriptor composed of three different features extracted from the optical flow (OF) of a video sequence. The first feature is the sum of the optical flow field magnitude computed after applying a threshold. The second feature is the joint entropy of the OF magnitude of two consecutive frames used to measure the dissimilarity. The third feature is the variance computed from a space-time cuboid constructed using history of the OF field magnitude. Performance of the proposed descriptor is evaluated on the widely used UMN dataset in terms of accuracy and processing time. For UMN dataset, the proposed descriptor provides the highest area under the curve (AUC) compared to the approaches already published in literature. (C) 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机译:在本文中,提出了一种新颖的描述符,用于在全局范围内对人群视频进行异常检测。传统的人群视频异常检测方法面临着高精度与实时性能之间权衡的困境。为了解决此问题,我们提出了一种有效的描述符,该描述符由从视频序列的光流(OF)中提取的三个不同特征组成。第一个特征是在应用阈值后计算出的光流场大小之和。第二个特征是用于测量相异性的两个连续帧的OF大小的联合熵。第三个特征是从使用OF场大小的历史记录构造的时空长方体计算出的方差。在准确性和处理时间方面,在广泛使用的UMN数据集上评估了提出的描述符的性能。对于UMN数据集,与文献中已经发表的方法相比,提出的描述符提供了曲线下的最大面积(AUC)。 (C)2019国际模拟数学与计算机协会(IMACS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号