首页> 外文期刊>Mathematics and computers in simulation >Frequency-domain analytic method for efficient thermal simulation under curved trajectories laser heating
【24h】

Frequency-domain analytic method for efficient thermal simulation under curved trajectories laser heating

机译:弯曲轨迹激光加热有效热仿真的频域解析方法

获取原文
获取原文并翻译 | 示例

摘要

In the context of Computer Simulation, the problem of heat transfer analysis of thin plate laser heating is relevant for downstream simulations of machining processes. Alternatives to address the problem include (i) numerical methods, which require unaffordable time and storage computing resources even for very small domains, (ii) analytical methods, which are less expensive but are limited to simple geometries, straight trajectories and do not account for material non-linearities or convective cooling. This manuscript presents a parallel efficient analytic method to determine, in a thin plate under convective cooling, the transient temperature field resulting from application of a laser spot following a curved trajectory. Convergence of both FEA (Finite Element Analysis) and the analytic approaches for a small planar plate is presented, estimating a maximum relative error for the analytic approach below 3.5% at the laser spot. Measured computing times evidence superior efficiency of the analytic approach w.r.t. FEA. A study case, with the analytic solution, for a large spatial and time domain (1 m x 1 m and 12 s history, respectively) is presented. This case is not tractable with FEA, where domains larger than 0.05 m x 0.05 m and 2 s require high amounts of computing time and storage. (C) 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机译:在计算机仿真的背景下,薄板激光加热的传热分析问题与加工过程的下游仿真有关。解决该问题的替代方法包括(i)数值方法,即使对于很小的领域也需要大量时间和存储计算资源;(ii)分析方法,其成本较低,但仅限于简单的几何形状,笔直的轨迹并且不考虑在内材料非线性或对流冷却。该手稿提出了一种并行高效的分析方法,用于确定在对流冷却条件下的薄板中,由于沿弯曲轨迹施加激光点而产生的瞬态温度场。提出了有限元分析和小平板分析方法的收敛性,估计在激光点处分析方法的最大相对误差低于3.5%。测得的计算时间证明了分析方法的出色效率有限元分析。提出了带有解析解的研究案例,该案例适用于较大的空间和时域(分别为1 m x 1 m和12 s历史)。对于FEA来说,这种情况很难解决,因为大于0.05 m x 0.05 m和2 s的域需要大量的计算时间和存储空间。 (C)2019国际模拟数学与计算机协会(IMACS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号