首页> 外文期刊>Mathematics and computers in simulation >A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems
【24h】

A third-derivative two-step block Falkner-type method for solving general second-order boundary-value systems

机译:求解一般二阶边值系统的三阶导数两步块Falkner型方法

获取原文
获取原文并翻译 | 示例

摘要

In this article, a third derivative continuous 2-step block Falkner-type method for the general solution of second order boundary value problems of ordinary differential equations (ODEs) with different types of boundary conditions is developed. The approaches of collocation and interpolation are adopted to derive the new Falkner-type method, which is then implemented in a block mode to get approximations at all the grid points simultaneously. This method is said to be a global method since it simultaneously produces a solution over the entire interval, although it may also be categorized as a boundary value method (see Brugnano and Trigiante (1998)). The order and the convergence analysis of the proposed method are studied. The new Falkner-type scheme is applied to solve linear and non-linear systems of second-order boundary value problems of ODEs considering different types of boundary conditions. Numerical results obtained through the implementation of the scheme are very much close to the theoretical solution and found favourably compared with various existing methods in the literature. (C) 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机译:本文针对具有不同边界条件的常微分方程(ODE)的二阶边值问题的一般解,开发了一种三阶导数连续两步块Falkner型方法。采用并置和内插的方法来推导新的Falkner型方法,然后以块模式实施该方法,以同时获得所有网格点的近似值。这种方法被称为全局方法,因为它同时在整个间隔内产生一个解,尽管它也可以归类为边界值方法(参见Brugnano和Trigiante(1998))。研究了该方法的阶次和收敛性分析。新的Falkner型方案用于解决考虑不同类型边界条件的ODE的二阶边值问题的线性和非线性系统。通过该方案的实施获得的数值结果与理论解非常接近,并且与文献中的各种现有方法相比具有良好的发现。 (C)2019国际模拟数学与计算机协会(IMACS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号