首页> 外文期刊>Mathematics and computers in simulation >When integration sparsification fails: Banded Galerkin discretizations for Hermite functions, rational Chebyshev functions and sinh-mapped Fourier functions on an infinite domain, and Chebyshev methods for solutions with C~∞ endpoint singularities
【24h】

When integration sparsification fails: Banded Galerkin discretizations for Hermite functions, rational Chebyshev functions and sinh-mapped Fourier functions on an infinite domain, and Chebyshev methods for solutions with C~∞ endpoint singularities

机译:当积分稀疏化失败时:无限域上的Hermite函数,有理Chebyshev函数和sinh映射傅立叶函数的带状Galerkin离散化,以及具有C〜∞端点奇点的Chebyshev方法

获取原文
获取原文并翻译 | 示例

摘要

Chebyshev polynomial spectral methods are very accurate, but are plagued by the cost and ill-conditioning of dense discretization matrices. Modified schemes, collectively known as "integration sparsification", have mollified these problems by discretizing the highest derivative as a diagonal matrix. Here, we examine five case studies where the highest derivative diagonalization fails. Nevertheless, we show that Galerkin discretizations do yield banded matrices that retain most of the advantages of "integration sparsification". Symbolic computer algebra greatly extends the reach of spectral methods. When spectral methods are implemented using exact rational arithmetic, as is possible for small truncation N in Maple, Mathematica and their ilk, roundoff error is irrelevant, and sparsification failure is not worrisome. When the discretization contains a parameter L, symbolic algebra spectral methods return, as answer to an eigenproblem, not discrete numbers but rather a plane algebraic curve defined as the zero set of a bivariate polynomial P(lambda, L); the optimal approximations to the eigenvalues lambda(j) are in the middle of the straight portions of the zero contours of P(lambda; L) where the isolines are parallel to the L axis. (C) 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机译:Chebyshev多项式频谱方法非常准确,但是却受到密集离散矩阵的成本和条件不佳的困扰。修改方案统称为“积分稀疏化”,通过将最高导数离散为对角矩阵来缓解了这些问题。在这里,我们研究了五个案例研究,其中最高导数对角化失败。但是,我们表明,Galerkin离散化确实可以产生带状矩阵,该矩阵保留了“积分稀疏化”的大部分优点。符号计算机代数极大地扩展了光谱方法的范围。当使用精确有理算术来实现频谱方法时,如Maple,Mathematica及其同类中的小截短N可能的情况,舍入误差无关紧要,稀疏化失败也不会令人担忧。当离散化包含参数L时,符号代数谱方法将返回离散特征,而不是将平面代数曲线定义为双变量多项式P(lambda,L)的零集,作为对本征问题的解答;特征值lambda(j)的最佳近似值在等值线平行于L轴的P(lambda; L)零轮廓的直线部分的中间。 (C)2018国际模拟数学与计算机协会(IMACS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号