首页> 外文期刊>Mathematics and computers in simulation >A case-study in open-source CFD code verification. Part Ⅱ: Boundary condition non-orthogonal correction
【24h】

A case-study in open-source CFD code verification. Part Ⅱ: Boundary condition non-orthogonal correction

机译:开源CFD代码验证中的案例研究。第二部分:边界条件非正交校正

获取原文
获取原文并翻译 | 示例

摘要

This investigation constitutes the follow-up to a previous work in which we applied the manufactured solution procedure to verify the OpenFOAM diffusion operator on different types of meshes. Theoretical convergence orders were observed for Poisson's equation solver on orthogonal hexahedral grids using several boundary conditions. We noticed that on non-orthogonal grids even slight mesh distortions reduce the theoretical second order convergence rate to first order. Our investigation showed that this loss in convergence order takes place when Dirichlet and/or Neumann boundary conditions are used on non-orthogonal meshes. In this paper, we introduce ways to achieve theoretical second order convergence accuracy, mainly based on applying non-orthogonal correction to Dirichlet and/or Neumann boundary condition schemes. A peculiarity was discovered for the Least-Squares gradient scheme that slightly affects second-order convergence, and which we attribute to the non-orthogonal correction at boundaries in the Least-Squares vector reconstruction library. The verification procedure is performed using the method of manufactured solutions for the Poisson equation and an analytical solution, the SIMPLE solver, for the Navier-Stokes equations. The average and maximum error norms were used to calculate the convergence rate. Comparative results are presented (C) 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机译:该研究构成了先前工作的后续工作,在该工作中,我们应用了制造好的求解过程来验证不同类型的网格上的OpenFOAM扩散算子。在几个边界条件下,在正交六面体网格上观察泊松方程求解器的理论收敛阶数。我们注意到,在非正交网格上,即使轻微的网格变形也会将理论上的二阶收敛速度降低到一阶。我们的研究表明,在非正交网格上使用Dirichlet和/或Neumann边界条件时,会发生收敛阶数损失。在本文中,我们主要基于将非正交校正应用于Dirichlet和/或Neumann边界条件方案,介绍了实现理论上二阶收敛精度的方法。发现了最小二乘梯度方案的一个特质,该方案会稍微影响二阶收敛,并且我们将其归因于最小二乘向量重构库中边界的非正交校正。验证过程使用Poisson方程的制造解决方案和Navier-Stokes方程的分析解决方案SIMPLE求解器执行。平均和最大误差范数用于计算收敛速度。给出了比较结果(C)2017年国际数学和模拟计算机协会(IMACS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号