首页> 外文期刊>Mathematics and computers in simulation >Splitting methods for the numerical solution of multi-component mass transfer problems
【24h】

Splitting methods for the numerical solution of multi-component mass transfer problems

机译:多元传质问题数值解的分裂方法

获取原文
获取原文并翻译 | 示例

摘要

In a multi-component system the diffusion of a certain species is dictated not only by its own concentration gradient but also by the concentration gradient of the other species. In this case, the mathematical model is a system of strongly coupled second order elliptic/parabolic partial differential equations. In this paper, we adapt the splitting method for numerical solution of multi-component mass transfer equations, with emphasis on the linear ternary systems. We prove the positive definiteness assumptions for the discrete problem matrices which ensure the stability of the method. The numerical experiments performed confirmed the theoretical results, and the results obtained show good numerical performances. (C) 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机译:在多组分系统中,某些物种的扩散不仅取决于其自身的浓度梯度,还取决于其他物种的浓度梯度。在这种情况下,数学模型是一个强耦合的二阶椭圆/抛物型偏微分方程组。在本文中,我们将分裂方法用于多组分传质方程的数值解,重点是线性三元系统。我们证明了离散问题矩阵的正定性假设,从而确保了方法的稳定性。进行的数值实验证实了理论结果,并且所获得的结果显示出良好的数值性能。 (C)2018国际模拟数学与计算机协会(IMACS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号