首页> 外文期刊>Mathematics and computers in simulation >Neural Network-based Design Approach For Submicron Mosintegrated Circuits
【24h】

Neural Network-based Design Approach For Submicron Mosintegrated Circuits

机译:基于神经网络的亚微米微集成电路设计方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, a neural network-based solution to BSIM3v3 MOSFET model is developed to find the most suitable channel parameters to improve the production yield and operation accuracy of submicron integrated circuits. By means of the proposed solution the channel parameters of each transistor can be found using terminal voltages and the drain current. The training data of the developed neural network are obtained by various simulations in the HSPICE design environment with TSMC 0.18μ and AMIS 0.5μ process parameters. The neural network structure is developed and trained in MATLAB 6.0 environment. The efficiency of the proposed neural network-based model is tested on different analog integrated circuits.
机译:在这项工作中,开发了基于神经网络的BSIM3v3 MOSFET模型解决方案,以找到最合适的通道参数,以提高亚微米集成电路的生产良率和工作精度。通过提出的解决方案,可以使用端子电压和漏极电流找到每个晶体管的沟道参数。在HSPICE设计环境中,采用TSMC0.18μ和AMIS0.5μ工艺参数进行各种模拟,获得了开发的神经网络的训练数据。神经网络结构是在MATLAB 6.0环境中开发和训练的。在不同的模拟集成电路上测试了所提出的基于神经网络的模型的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号