首页> 外文期刊>Mathematics and computers in simulation >Approximation Of Matrix Operators Applied To Multiple Vectors
【24h】

Approximation Of Matrix Operators Applied To Multiple Vectors

机译:应用于多个向量的矩阵算子的逼近

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a numerical method for approximating the product of a matrix function with multiple vectors by Krylov subspace methods combined with a Q R decomposition of these vectors. This problem arises in the implementation of exponential integrators for semilinear parabolic problems. We will derive reliable stopping criteria and we suggest variants using up- and downdating techniques. Moreover, we show how Ritz vectors can be included in order to speed up the computation even further. By a number of numerical examples, we will illustrate that the proposed method will reduce the total number of Krylov steps significantly compared to a standard implementation if the vectors correspond to the evaluation of a smooth function at certain quadrature points.
机译:在本文中,我们提出了一种数值方法,用于通过Krylov子空间方法结合这些向量的Q R分解来逼近具有多个向量的矩阵函数的乘积。在针对半线性抛物线问题的指数积分器的实现中会出现此问题。我们将得出可靠的停止标准,并建议使用更新和降级技术。此外,我们展示了如何包括Ritz向量,以进一步加快计算速度。通过大量数值示例,我们将说明,如果矢量与某些正交点上的平滑函数求值相对应,则与标准实现相比,该方法将大大减少Krylov步骤的总数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号