首页> 外文期刊>Mathematics and computers in simulation >Linear Programming Support Vector Regression With Wavelet Kernel: A New Approach To Nonlinear Dynamical Systems Identification
【24h】

Linear Programming Support Vector Regression With Wavelet Kernel: A New Approach To Nonlinear Dynamical Systems Identification

机译:小波核的线性规划支持向量回归:非线性动力学系统辨识的新方法

获取原文
获取原文并翻译 | 示例

摘要

Wavelet theory has a profound impact on signal processing as it otters a rigorous mathematical framework to the treatment of multiresolution problems. The combination of soft computing and wavelet theory has led to a number of new techniques. On the other hand, as a new generation of learning algorithms, support vector regression (SVR) was developed by Vapnik et al. recently, in which ε-insensitive loss function was defined as a trade-off between the robust loss function of Huber and one that enables sparsity within the SVs. The use of support vector kernel expansion also provides us a potential avenue to represent nonlinear dynamical systems and underpin advanced analysis. However, for the support vector regression with the standard quadratic programming technique, the implementation is computationally expensive and sufficient model sparsily cannot be guaranteed. In this article, from the perspective of model sparsity, the linear programming support vector regression (LP-SVR) with wavelet kernel was proposed, and the connection between LP-SVR with wavelet kernel and wavelet networks was analyzed. In particular, the potential of the LP-SVR for nonlinear dynamical system identification was investigated.
机译:小波理论为处理多分辨率问题提供了严格的数学框架,因此对信号处理产生了深远的影响。软计算和小波理论的结合产生了许多新技术。另一方面,作为新一代的学习算法,Vapnik等人开发了支持向量回归(SVR)。最近,其中ε不敏感损失函数被定义为Huber鲁棒损失函数与SV稀疏函数之间的折衷。支持向量内核扩展的使用也为我们提供了一个代表非线性动力学系统和加强高级分析的潜在途径。然而,对于使用标准二次编程技术的支持向量回归而言,该实现在计算上是昂贵的,并且不能保证足够的模型。本文从模型稀疏性的角度出发,提出了带有小波核的线性规划支持向量回归(LP-SVR),并分析了带有小波核的LP-SVR与小波网络之间的联系。特别是,研究了LP-SVR在非线性动力学系统识别中的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号