首页> 外文期刊>Mathematics and computers in simulation >Semi-supervised outlier detection based on fuzzy rough C-means clustering
【24h】

Semi-supervised outlier detection based on fuzzy rough C-means clustering

机译:基于模糊粗糙C均值聚类的半监督离群值检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a fuzzy rough semi-supervised outlier detection (FRSSOD) approach with the help of some labeled samples and fuzzy rough C-means clustering. This method introduces an objective function, which minimizes the sum squared error of clustering results and the deviation from known labeled examples as well as the number of outliers. Each cluster is represented by a center, a crisp lower approximation and a fuzzy boundary by using fuzzy rough C-means clustering and only those points located in boundary can be further discussed the possibility to be reassigned as outliers. As a result, this method can obtain better clustering results for normal points and better accuracy for outlier detection. Experiment results show that the proposed method, on average, keep, or improve the detection precision and reduce false alarm rate as well as reduce the number of candidate outliers to be discussed.
机译:本文借助一些标记样本和模糊粗糙C均值聚类,提出了一种模糊粗糙半监督离群值检测(FRSSOD)方法。该方法引入了一个目标函数,该函数最小化了聚类结果的平方和误差以及与已知标记示例的偏差以及离群数。通过使用模糊粗糙C均值聚类,每个聚类由中心,明晰的下近似和模糊边界表示,只有位于边界的那些点才能进一步讨论重新分配为离群值的可能性。结果,该方法可以获得针对法线点的更好的聚类结果以及对于离群点检测的更好的准确性。实验结果表明,该方法平均可以保持或提高检测精度,减少误报率,并减少待讨论的异常值数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号