首页> 外文期刊>Mathematics and computers in simulation >The Best-Approximation Weighted-Residuals method for the steady convection-diffusion-reaction problem
【24h】

The Best-Approximation Weighted-Residuals method for the steady convection-diffusion-reaction problem

机译:稳态对流扩散反应问题的最佳近似加权残值法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present an analytical, parameter-free, Petrov-Galerkin method that gives stable solutions of convection dominated boundary-value problems. We call it the Best Approximation Weighted Residuals (BAWR) method since it gives the best approximation in the norm induced by the inner-product used to build the weighted-residuals approximation. The method computes the optimal weighting functions by solving suitable adjoint problems. Moreover, through a localization technique it becomes computationally efficient without loosing accuracy. The analysis is confirmed by numerical results.
机译:在本文中,我们提出了一种分析性,无参数的Petrov-Galerkin方法,该方法给出了对流占优的边值问题的稳定解。我们称其为最佳近似加权残差(BAWR)方法,因为它在用于建立加权残差逼近的内积引起的范数中提供了最佳近似值。该方法通过解决合适的伴随问题来计算最佳加权函数。而且,通过定位技术,它在不损失精度的情况下变得计算效率高。数值结果证实了该分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号