首页> 外文期刊>Mathematics and computers in simulation >Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method
【24h】

Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method

机译:使用基于最小欧氏距离梯度的优化方法求解多目标马尔可夫链的Pareto前沿

获取原文
获取原文并翻译 | 示例

摘要

A novel method based on minimizing the Euclidean distance is proposed for generating a well-distributed Pareto set in multi-objective optimization for a class of ergodic controllable Markov chains. The proposed approach is based on the concept of strong Pareto policy. We consider the case where the search space is a non-strictly convex set. For solving the problem we introduce the Tikhonov's regularization method and implement the Lagrange principle. We formulate the original problem introducing linear constraints over the nonlinear problem employing the c-variable method and constraining the cost-functions allowing points in the Pareto front to have a small distance from one another. As a result, the proposed method generates an even representation of the entire Pareto surface. Then, we propose an algorithm to compute the Pareto front and provide all the details needed to implement the method in an efficient and numerically stable way. As well, we prove the main Theorems for describing the dependence of the saddle point for the regularizing parameter and analyzes its asymptotic behavior. Moreover, we analyze the step size parameter of the Lagrange principle and also its asymptotic behavior. The suggested approach is validated theoretically and verified by a numerical example related to security patrolling that present a technique for visualizing the Pareto front.
机译:提出了一种基于最小欧氏距离的新颖方法,用于在一类遍历可控马尔可夫链的多目标优化中生成分布良好的帕累托集。提议的方法基于强大的帕累托政策的概念。我们考虑搜索空间是非严格凸集的情况。为了解决该问题,我们介绍了Tikhonov的正则化方法并实现了Lagrange原理。我们制定了最初的问题,即使用c变量方法在非线性问题上引入了线性约束,并限制了成本函数,从而使Pareto前沿中的点彼此之间的距离较小。结果,所提出的方法产生了整个帕累托表面的均匀表示。然后,我们提出一种算法来计算Pareto前沿,并提供以有效且数值稳定的方式实现该方法所需的所有细节。同样,我们证明了描述鞍点对正则化参数的依赖性的主要定理,并分析了其渐近行为。此外,我们分析了拉格朗日原理的步长参数及其渐近行为。该建议的方法在理论上得到了验证,并通过与安全巡逻有关的数值示例进行了验证,该示例提供了可视化帕累托阵线的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号