首页> 外文期刊>Mathematics and computers in simulation >Multiple parameter determination in textile material design: A Bayesian inference approach based on simulation
【24h】

Multiple parameter determination in textile material design: A Bayesian inference approach based on simulation

机译:纺织材料设计中的多参数确定:基于仿真的贝叶斯推理方法

获取原文
获取原文并翻译 | 示例

摘要

A mathematical model of heat–moisture transfer within textiles and a corresponding inverse problem of textile material design (IPTMD) are reformulated. A stability theorem for the forward problem is given to show wellposedness of the heat–moisture transfer model. A Bayesian inference approach is presented to solve the IPTMD based on thermal comfort of clothing. The triple parameters (thickness, thermal conductivity, porosity of textiles) are simultaneously determined in the sense of the statistical point estimation by the likelihood function. The Bayesian techniques based on Markov chain Monte Carlo (MCMC) methods are employed to simultaneously determine three parameters in IPTMD, where the Metropolis–Hastings algorithm is applied in the inversion process. The interpolated likelihood function reduces significantly the computational cost associated with the implementation of MCMC method without loss of accuracy in the parameters estimation. Numerical experiments confirm that Bayesian inference method can provide more accurate solutions to the IPTMD.
机译:重新构造了纺织品内热湿传递的数学模型以及相应的纺织品材料设计逆问题(IPTMD)。给出了前向问题的稳定性定理,以证明热湿传递模型的适定性。提出了一种贝叶斯推理方法,以基于衣物的热舒适性来解决IPTMD。在统计点估计的意义上,由似然函数同时确定三个参数(厚度,导热率,纺织品的孔隙率)。采用基于马尔可夫链蒙特卡罗(MCMC)方法的贝叶斯技术来同时确定IPTMD中的三个参数,在该过程中将Metropolis-Hastings算法应用于反演过程。内插似然函数可显着降低与实施MCMC方法相关的计算成本,而不会损失参数估计的准确性。数值实验证明,贝叶斯推理方法可以为IPTMD提供更准确的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号