首页> 外文期刊>Mathematics and computers in simulation >A secondary construction of bent functions, octal gbent functions and their duals
【24h】

A secondary construction of bent functions, octal gbent functions and their duals

机译:弯曲函数,八进制gbent函数及其对偶的二次构造

获取原文
获取原文并翻译 | 示例

摘要

We observe that every octal gbent function in even dimension is essentially equivalent to a bent function obtained with Carlet's secondary construction of bent functions from three bent functions with certain properties. We use this strong connection to completely describe octal gbent functions in even dimension and their duals. This is also the first comprehensive treatment of duality for gbent functions. Implementations of this construction of bent functions also enable us to construct infinite classes of octal gbent functions and their duals. We present some examples.
机译:我们观察到,偶数维中的每个八进制gbent函数基本上等于通过Carlet的弯曲函数的二级构造从具有某些特性的三个弯曲函数获得的弯曲函数。我们使用这种强大的联系来完整描述偶数维中的八进制gbent函数及其对偶。这也是对功能双重性的第一个综合治疗。这种弯曲函数构造的实现还使我们能够构造八进制gbent函数及其对偶的无限类。我们给出一些例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号