首页> 外文期刊>Mathematics and computers in simulation >A non linear approximation method for solving high dimensional partial differential equations: Application in finance
【24h】

A non linear approximation method for solving high dimensional partial differential equations: Application in finance

机译:一种求解高维偏微分方程的非线性逼近方法:在金融中的应用

获取原文
获取原文并翻译 | 示例

摘要

We study an algorithm which has been proposed by A. Ammar, B. Mokdad, F. Chinesta, R. Keunings in 2006 to solve high-dimensional partial differential equations. The idea is to represent the solution as a sum of tensor products and to compute iteratively the terms of this sum. This algorithm is related to the so-called greedy algorithms, as introduced by V.N. Temlyakov. In this paper, we investigate the application of the greedy algorithm in finance and more precisely to the option pricing problem. We approximate the solution to the Black-Scholes equation and we propose a variance reduction method. In numerical experiments, we obtain results for up to 10 underlyings. Besides, the proposed variance reduction method permits an important reduction of the variance in comparison with a classical Monte Carlo method.
机译:我们研究了A. Ammar,B。Mokdad,F。Chinesta和R. Keunings在2006年提出的用于解决高维偏微分方程的算法。想法是将解表示为张量积的总和,并迭代计算该总和的项。该算法与V.N.引入的所谓贪婪算法有关。特姆利亚科夫。在本文中,我们研究贪婪算法在金融中的应用,更确切地说,是在期权定价问题中的应用。我们对Black-Scholes方程的解进行近似,并提出了方差减少方法。在数值实验中,我们获得多达10个基础的结果。此外,与经典的蒙特卡洛方法相比,所提出的方差减小方法允许方差的重要减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号