首页> 外文期刊>Mathematical structures in computer science >A cooperative co-evolutionary particle swarm optimiser based on a niche sharing scheme for the ow shop scheduling problem under uncertainty
【24h】

A cooperative co-evolutionary particle swarm optimiser based on a niche sharing scheme for the ow shop scheduling problem under uncertainty

机译:不确定条件下流水车间调度问题的基于小生境共享的协同进化粒子群优化算法

获取原文
获取原文并翻译 | 示例

摘要

The flow shop scheduling problem based on ideal and precise conditions has been a focus ofrnconsiderable research since the first easy scheduling problem was formulated. In reality,rnsome uncertain factors always restrict the scheduling optimisation problem. In this paper,rntaking uncertain processing time as an example, we use generalised rough sets theory torntransform the rough flow shop scheduling model into the precise scheduling model. Wernadopt a cooperative co-evolutionary particle swarm optimisation algorithm based on a nichernsharing scheme (NCPSO) to minimise the makespan in comparison with the particle swarmrnoptimiser (PSO) and co-evolution particle swarm optimiser (CPSO) algorithms. The newrnalgorithm is characterised by a strengthening of the ability to reserve excellent particles andrnsearching the optimal solution. Experimental results show that the new algorithm is morerneffective and efficient than the others.
机译:自从提出第一个简单的调度问题以来,基于理想条件和精确条件的流水车间调度问题一直是研究的重点。实际上,一些不确定因素总是限制调度优化问题。本文以不确定的处理时间为例,采用广义粗糙集理论将粗糙流水车间调度模型转化为精确调度模型。与粒子群优化器(PSO)和协同进化粒子群优化器(CPSO)算法相比,Wernad采用基于nichernsharing方案(NCPSO)的协作式协同进化粒子群优化算法,以最大程度地缩短制造周期。新算法的特点是增强了保留优秀粒子的能力并研究了最佳解决方案。实验结果表明,新算法比其他算法更有效。

著录项

  • 来源
    《Mathematical structures in computer science》 |2014年第5期|e240502.1-e240502.11|共11页
  • 作者

    BIN JIAO; SHAOBIN YAN;

  • 作者单位

    Electric School, Shanghai Dianji University,690 Jiang Chuan Road, Min Hang District, Shanghai, China;

    School of Information Science and Engineering,East China University of Science and Technology, Shanghai, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号