首页> 外文期刊>Mathematical structures in computer science >Automatically inferring loop invariants via algorithmic learning
【24h】

Automatically inferring loop invariants via algorithmic learning

机译:通过算法学习自动推断循环不变式

获取原文
获取原文并翻译 | 示例

摘要

By combining algorithmic learning, decision procedures, predicate abstraction and simplerntemplates for quantified formulae, we present an automated technique for finding looprninvariants. Theoretically, this technique can find arbitrary first-order invariants (modulo arnfixed set of atomic propositions and an underlying satisfiability modulo theories solver) inrnthe form of the given template and exploit the flexibility in invariants by a simplernrandomized mechanism. In our study, the proposed technique was able to find quantifiedrninvariants for loops from the Linux source and other realistic programs. Our contribution isrna simpler technique than the previous works yet with a reasonable derivation power.
机译:通过结合算法学习,决策程序,谓词抽象和用于量化公式的简单模板,我们提出了一种寻找循环不变性的自动化技术。从理论上讲,该技术可以在给定模板形式下找到任意一阶不变式(原子命题的模态固定集合和底层可满足性模理论求解器),并通过简单的随机化机制利用不变性的灵活性。在我们的研究中,提出的技术能够从Linux源代码和其他实际程序中找到循环的量化不变量。我们的贡献是比以前的工作更简单的技术,但具有合理的推导能力。

著录项

  • 来源
    《Mathematical structures in computer science》 |2015年第4期|892-915|共24页
  • 作者单位

    Program Analysis Department, Fasoo, Seoul, Republic of Korea;

    School of Computer Science, Carnegie Mellon University, Pittsburgh, United States;

    Department of Computer Science School of Computing, National University of Singapore, Singapore;

    INRIA and Institute of Information Science, Academia Sinica, Taipei, Taiwan;

    School of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号